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Background and motivation

Safe learning-based control

•Control of stochastic systems requires knowledge of under-
lying probability distributions
• In practice: distributions are unknown
•Distributionally robust approach [1, 2]: control assuming
worst-case distribution in ambiguity set A

Gather data → Ambiguity decreases → Safely reduce con-
servativeness

Robust Stochastic
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Applications

Rigorous statistical guarantees→ safety-critical applications
e.g., autonomous driving, robotics, ... (physical interaction
with humans)

Problem statement
We aim to stabilize a linear system

xt+1 = A(wt)xt + B(wt)ut, (1)

where random variables wt ∈ W := {1, 2, . . . , k}, specify
the operation mode (A(i) = Ai, B(i) = Bi) at time t, and
P : 2W → IR, with P[w = i ] = P[{i}] = pi is an unknown
probability measure.

Challenge: Mean-square (MS) stability conditions depend on
true distribution p [3].

Goal: Mean-square stability in probability

For a given confidence level 1−α ∈ (0, 1), compute a linear
state feedback gain K, which renders (1) MS stable with
probability at least 1− α.
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Proposed approach

•Estimate distribution p̂ based on N i.i.d. samples {wi}Ni=1
•Ensure MS stability for all p ∈ Aℓ1r (p̂) := {p ∈ ∆k | ∥p−p̂∥1 ≤ r}

Subproblems

I Compute min r such that,

P[p ∈ Aℓ1r (p̂)] ≥ 1− α (2)

II Efficiently compute K that is MS stabilizing for all p ∈ Aℓ1r (p̂)
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I Bounding the ambiguity
PAC-type confidence bounds for the empirical probability distribution estimate:

if r ≤ min{rDKW, rM} ⇒ (2) holds

Dvoretzky-Kiefer-Wolfowitz

r = rDKW(α, k, N) := 2k

√
ln 2/α
2N

⇒ rDKW( · , k, N) = O
(
k√
N

)
McDiarmid + min-max loss bounds [4]

r = rM(α, k, N) :=

√
2 ln(1/α)
N +

√
2(k−1)
πN +

4k
1/2(k−1)1/4
N
3/4

⇒ rM( · , k, N) = O
(
k
3/4
√
N
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II Efficient computation of the feedback gain
Distributionally Robust Lyapunov-type stability condition:

∃P ≻ 0 : max
p∈A

k∑
i=1

piV (Āix) ≤ V (x)− ℓ(x,Kx), (3)

with Āi = Ai + BiK, V (x) = x⊤Px , and ℓ(x, u) = x⊤Qx + u⊤Ru, with Q ≻ 0, R ⪰ 0.

Method 1 – Vertex enumeration

ℓ1-ambiguity set is polytopic: Aℓ1r (p̂) = conv{p(i)}
nA
i=1.

(3)⇔ max
l∈IN[1,nA]

k∑
i=1

p
(l)
i V (Āix) ≤ V (x)− ℓ(x,Kx)

→ Reduced to finite number of LMI conditions. 1 2 3 4 5 6 7 8
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Drawback: computational cost of 1) computing vertices; and 2) solving LMI for all vertices.

Method 2 – Reformulation
Reformulation based on 3 key observations:

1 maxp∈A
∑k
i=1 piV (Āix) = σA(V (Āix))

2 Aℓ1r (p̂) = ∆k ∩ IB1(p̂, r) = ∆k ∩ C
3 σ∆k∩C(v) = (σ∆k @ σC)(v)

Infimal convolution: (f @ g)(v) = infz f (v − z) + g(z)

Easily computable support func-
tion of elementary sets

σ∆k(v) = max{v1, . . . , vk}
σC(v) = r∥v∥∞ + v ⊤p̂

Close approximation leads to 2K2 LMIs.

Experimental results

Computational cost
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Reformulation
Vertex enumeration (total)
Vertex computation

•Rapid growth of vertex count→ vertex enumer-
ation applicable for very low dimensions (k ≤ 7)
of the sample space W.

•Computation of the vertices of the ambiguity
set alone is more time-consuming than solving
the complete reformulated problem.

Sample complexity

Set-up

1 Given a closed-loop system

xt+1 =
(
A(wt) +KB(wt)

)
xt (4)

with a p̂-MSS controller K (stochastic approach)

2 Define distributional stability region S := {p′ | (4) p′-MSS}
3 Compute max r , s.t. Aℓ1r (p̂) ⊆ S ⇒ P((4) p-MSS) ≥ (1− α)

For Bernoulli system in [5], Aℓ1r (p̂) ⊆ S is easy to test.
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Distributionally robust Stochastic

For a given confidence level, the dis-
tributionally robust approach provides a
stabilizing controller using several orders
of magnitude less data.

Future work
•Extend to optimal control setting and nonlinear dynamics

•Relax i.i.d. assumption → Markov jump systems


