

STADIUS Center for Dynamical Systems,

Safe Learning-Based Control of Stochastic Jump Linear Systems: A Distributionally Robust Approach

Mathijs Schuurmans[†], Pantelis Sopasakis[‡], Panagiotis Patrinos[†] | [†]KU Leuven, Belgium, [‡] Queen's University Belfast, Northern Ireland

(2)

Background and motivation

Safe learning-based control

- Control of stochastic systems requires knowledge of underlying probability distributions
- In practice: distributions are **unknown**
- Distributionally robust approach [1, 2]: control assuming worst-case distribution in ambiguity set \mathcal{A}

Gather data \rightarrow Ambiguity decreases \rightarrow Safely reduce conservativeness

Probability simplex — Ambiguity set • empirical distribution • True distribution

Applications

Rigorous statistical guarantees \rightarrow safety-critical applications e.g., autonomous driving, robotics, ... (physical interaction with humans)

Problem statement

We aim to **stabilize** a linear system

 $x_{t+1} = A(w_t)x_t + B(w_t)u_t,$

(1)

where random variables $w_t \in \mathcal{W} := \{1, 2, \dots, k\}$, specify the operation mode $(A(i) = A_i, B(i) = B_i)$ at time t, and $P: 2^{\mathcal{W}} \to \mathbb{IR}$, with $P[w = i] = P[\{i\}] = p_i$ is an **unknown** probability measure.

Challenge: Mean-square (MS) stability conditions depend on true distribution p [3].

Goal: Mean-square stability in probability

For a given confidence level $1-\alpha \in (0, 1)$, compute a linear **state feedback gain** K, which renders (1) MS stable with probability at least $1 - \alpha$.

References

- [1] A. Shapiro, D. Dentcheva, and A. Ruszczyński, *Lectures on stochastic programming: modeling and theory*. SIAM, 2009.
- [2] P. Sopasakis, D. Herceg, A. Bemporad, and P. Patrinos, "Risk-averse model predictive control," Automatica, vol. 100, pp. 281–288, 2019.
- [3] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, *Discrete-time Markov jump linear systems*. Springer Science & Business Media, 2006. [4] S. Kamath, A. Orlitsky, D. Pichapati, and A. T. Suresh, "On learning distributions from their samples," in *Conference on*
- Learning Theory, pp. 1066–1100, 2015. [5] K. Gatsis and G. J. Pappas, "Sample complexity of networked control systems over unknown channels," in 2018 IEEE Conference on Decision and Control (CDC), pp. 6067–6072, IEEE, 2018.

Proposed approach

- Estimate distribution \hat{p} based on N i.i.d. samples $\{w_i\}_{i=1}^N$
- Ensure MS stability for all $p \in \mathcal{A}_r^{\ell_1}(\hat{p}) := \{ p \in \Delta_k \mid \|p \hat{p}\|_1 \leq r \}$

Subproblems

$$\mathsf{P}[p \in \mathcal{A}_r^{\ell_1}(\widehat{p})] \geq 1 - \alpha$$

Efficiently compute K that is MS stabilizing for all $p \in \mathcal{A}_r^{\ell_1}(\hat{p})$

Bounding the ambiguity

PAC-type confidence bounds for the empirical probability distribution estimate:

if $r \leq \min\{r_{DKW}, r_M\} \Rightarrow (2)$ holds

Dvoretzky-Kiefer-Wolfowitz

$$r = r_{\text{DKW}}(\alpha, k, N) := 2k\sqrt{\frac{\ln^{2}/\alpha}{2N}}$$
$$\Rightarrow r_{\text{DKW}}(\cdot, k, N) = \mathcal{O}\left(\frac{k}{\sqrt{N}}\right)$$

McDiarmid + min-max loss bounds [4]

$$r = r_{M}(\alpha, k, N) := \sqrt{\frac{2 \ln(1/\alpha)}{N}} + \sqrt{\frac{2(k-1)}{\pi N}} + \frac{4k^{1/2}}{\pi N}$$

$$r = r_{\mathsf{M}}(\alpha, k, N) := \sqrt{\frac{2 \ln(1/\alpha)}{N}} + \sqrt{\frac{2 \ln(1/\alpha)}{N}} + \sqrt{\frac{2 \ln(1/\alpha)}{N}} + \sqrt{\frac{2 \ln(1/\alpha)}{N}}$$

II Efficient computation of the feedback gain

Distributionally Robust Lyapunov-type stability condition:

$$\exists P \succ 0 : \max_{p \in \mathcal{A}} \sum_{i=1}^{k} p_i V(\bar{A}_i x) \leq V(x) - \ell(x, Kx)$$

with $\overline{A}_i = A_i + B_i K$, $V(x) = x^T P x$, and $\ell(x, u) = x^T Q x + u^T R u$, with $Q \succ 0$, $R \succeq 0$.

Method 1 – Vertex enumeration	
ℓ_1 -ambiguity set is polytopic : $\mathcal{A}_r^{\ell_1}(\hat{p}) = \mathbf{conv}\{p^{(i)}\}_{i=1}^{n_A}$.	10 ³
$(3) \Leftrightarrow \max_{l \in \mathbb{N}_{[1,n_{\mathcal{A}}]}} \sum_{i=1}^{k} p_i^{(l)} V(\bar{A}_i x) \leq V(x) - \ell(x, Kx)$	10 ² ご 10 ¹
\rightarrow Reduced to finite number of LMI conditions.	10^{0} 1 2
Drawback: computational cost of 1) computing vertices; and	2) solving

Method

Reformulation based on 3 key observa 1 $\max_{p \in \mathcal{A}} \sum_{i=1}^{k} p_i V(\bar{A}_i x) = \sigma_{\mathcal{A}}(V(\bar{A}_i x))$ **2** $\mathcal{A}_r^{\ell_1}(\hat{p}) = \Delta_k \cap \mathsf{B}_1(\hat{p}, r) = \Delta_k \cap C$ **3** $\sigma_{\Delta_k \cap C}(v) = (\sigma_{\Delta_k} \Box \sigma_C)(v)$ Infimal convolution: $(f \Box g)(v) = \inf_{z} f(v - z) + g(v)$

Close approximation leads to $2K^2$ LM

Experimental results

Sample complexity

Future work

- Extend to **optimal control** setting and nonlinear dynamics
- Relax i.i.d. assumption \rightarrow Markov jump systems

2 – Reform	nulation
tions: x))	Easily computable support func- tion of elementary sets
	$\sigma_{\Delta_k}(v) = \max\{v_1, \dots, v_k\}$ $\sigma_C(v) = r \ v\ _{\infty} + v^{\top} \hat{p}$
z) S.	

- Rapid growth of vertex count \rightarrow vertex enumeration applicable for very low dimensions ($k \leq 7$) of the sample space \mathcal{W} .
- Computation of the vertices of the ambiguity set alone is more time-consuming than solving the complete reformulated problem.

Set-up

 $x_{t+1} = \left(A(w_t) + KB(w_t)\right)x_t$

For a **given confidence level**, the distributionally robust approach provides a stabilizing controller using several orders of magnitude less data.

(4)