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Background and motivation Proposed approach
Method 2 — Reformulation

Reformulation based on 3 key observations:
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e Distributionally robust approach [1, 2]: control assuming Subproblems Infimal convolution: (f 0 g)(v) = inf, f(v — ) + g(z)

worst-case distribution in ambiquity set A | Compute min r such that Close approximation leads to 2K? LMls.
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PAC-type confidence bounds for the empirical probability distribution estimate:
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222 Probability simplex == Ambiguity set e empirical distribution = True distribution

ation applicable for very low dimensions (k < 7)
of the sample space W.

if r < min{rmpkw, (v} = (2) holds

Execution time [g]

Apolicati 2 ~ Reformulation | e Computation of the vertices of the ambiguity
PP Ications - — McDiarmid - -e- Vertex enumeration (total) . set a|one IS more t|me_consum|ng than SO|V|ng
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: the complete reformulated problem.

Rigorous statistical guarantees — safety-critical applications Dvoretzky-Kiefer-Wolfowitz 15 Quantlles > 4 6 8 10 12 14 16 18 20
e.g., autonomous driving, robotics, ... (physical interaction 107+ Dimension k
with humans)
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Sample complexity
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McDiarmid + min-max loss bounds [4] 101 1 Given a closed-loop system

We aim to stabilize a linear system TR TR 0 :
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. | L3 . with a p-MSS controller K (stochastic approach)
where random variables wy € W:={1,2 k}, specify = m(-, k.N)=0O (\W) Sample size N S Define ettt ional <iabil S 1 () oSS
the operation mode (A(/) = A;, B(/) = B;) at time t, and efine distributional stability region §:={p’ | (4) p~MSS}

P:2W & IR, with P[w = i] = P[{i}] = p; is an unknown 3 Compute maxr, s.t. A7(p) € S = P((4) p-MSS) > (1 — a)
probability measure.

Problem statement

xer = (Aw) + KB(wy)) xe

Il Efficient computation of the feedback gain For Bernoulli system in [5], A%(p) C S is easy to test.

Challenge: Mean-square (MS) stability conditions depend on Distributionally Robust Lyapunov-type stability condition: - Distributionally robust_-e- Stochastic
true distribution p [3]. K CTTIE T 1T T 1T T 1T
_ 99.9999 | ,.
Goal: Mean-square stability in probability 3P >0 TE%Z piV (Aix) < V(x) — £(x, Kx), 99.999 | #  For a given confidence level, the dis-
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L | P99 {1 tributionally robust approach provides a
with A; = A; + BiK, V(x) = x'Px, and £(x, u) = x'Qx + u'Ru, with Q@ = 0, R = 0. | 4 stabilizing controller using several orders

For a given confidence level 1—a € (0, 1), compute a linear
state feedback gain K, which renders (1) MS stable with
probability at least 1 — a.
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of magnitude less data.

Method 1 — Vertex enumeration

¢1-ambiguity set is polytopic: A‘ﬁl(ﬁ):conv{p(’)}fil. - - Sample size N
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