Mathijs Schuurmans ${ }^{\dagger}$, Pantelis Sopasakis ${ }^{\ddagger}$, Panagiotis Patrinos ${ }^{\dagger} \mid \dagger K U$ Leuven, Belgium, ${ }^{\ddagger}$ Queen's University Belfast, Northern Ireland

Background and motivation

Safe learning-based control

- Control of stochastic systems requires knowledge of underlying probability distributions
- In practice: distributions are unknown
- Distributionally robust approach [1, 2]: control assuming worst-case distribution in ambiguity set \mathcal{A}
Gather data \rightarrow Ambiguity decreases \rightarrow Safely reduce conservativeness

Applications

Rigorous statistical guarantees \rightarrow safety-critical applications e.g., autonomous driving, robotics, ... (physical interaction with humans)

Problem statement

We aim to stabilize a linear system

$$
\begin{equation*}
x_{t+1}=A\left(w_{t}\right) x_{t}+B\left(w_{t}\right) u_{t}, \tag{1}
\end{equation*}
$$ where random variables $w_{t} \in \mathcal{W}:=\{1,2, \ldots, k\}$, specify the operation mode $\left(A(i)=A_{i}, B(i)=B_{i}\right)$ at time t, and $\mathrm{P}: 2^{\mathcal{W}} \rightarrow \mathbb{R}$, with $\mathrm{P}[w=i]=\mathrm{P}[\{i\}]=p_{i}$ is an unknown probability measure.

Challenge: Mean-square (MS) stability conditions depend on true distribution p [3].

Goal: Mean-square stability in probability
For a given confidence level $1-\alpha \in(0,1)$, compute a linear state feedback gain K, which renders (1) MS stable with probability at least $1-\alpha$.

References

Proposed approach

Method 2 - Reformulation

Method $2-\mathbf{R}$
 $$
1 \max _{p \in \mathcal{A}} \sum_{i=1}^{k} p_{i} V\left(\bar{A}_{i} x\right)=\sigma_{\mathcal{A}}\left(V\left(\bar{A}_{i} x\right)\right)
$$

$$
2 \mathcal{A}_{r}^{\ell_{r}}(\hat{p})=\Delta_{k} \cap \mathrm{~B}_{1}(\hat{p}, r)=\Delta_{k} \cap C
$$

Subproblems

\[\)| I Compute $\boldsymbol{\operatorname { m i n }} r \text { such that, }$ |
| :--- |
| II $\left[p \in \mathcal{A}_{r}^{\ell_{1}}(\hat{p})\right] \geq 1-\alpha$ |\(\quad Efficiently compute K that is \mathrm{MS} stabilizing for all p \in \mathcal{A}_{r}^{\ell_{1}}(\hat{p})

\]

\qquad $3 \sigma_{\Delta_{k} \cap C}(v)=\left(\sigma_{\Delta_{k}} \square \sigma_{C}\right)(v)$

Easily computable support function of elementary sets
$\sigma_{\Delta_{k}}(v)=\max \left\{v_{1}, \ldots, v_{k}\right\}$
$\sigma_{C}(v)=r\|v\|_{\infty}+v^{\top} \hat{p}$
Close approximation leads to $2 K^{2} \mathrm{LM} / \mathrm{s}$.

Experimental results

I Bounding the ambiguity

PAC-type confidence bounds for the empirical probability distribution estimate:
if $r \leq \boldsymbol{\operatorname { m i n }}\left\{r_{\mathrm{DKW}}, r_{\mathrm{M}}\right\} \Rightarrow(2)$ holds

II Efficient computation of the feedback gain

Distributionaly Robust Lyapunov-type stability condition:

$$
\begin{equation*}
\exists P \succ 0: \max _{p \in \mathcal{A}} \sum_{i=1}^{k} p_{i} V\left(\bar{A}_{i} x\right) \leq V(x)-\ell(x, K x), \tag{3}
\end{equation*}
$$

with $\bar{A}_{i}=A_{i}+B_{i} K, V(x)=x^{\top} P x$, and $\ell(x, u)=x^{\top} Q x+u^{\top} R u$, with $Q \succ 0, R \succeq 0$.

Method 1 - Vertex enumeration

ℓ_{1}-ambiguity set is polytopic: $\mathcal{A}_{r}^{\ell_{1}}(\hat{p})=\operatorname{conv}\left\{p^{(i)}\right\}_{i=1}^{n_{\mathcal{A}}}$.
(3) $\Leftrightarrow \max _{l \in \mathbb{N}_{\left[1, n_{A}\right]}} \sum_{i=1}^{k} p_{i}^{(l)} V\left(\bar{A}_{i} x\right) \leq V(x)-\ell(x, K x)$
\rightarrow Reduced to finite number of LMI conditions

$\begin{array}{lllll}4 & 5 & 6 \\ \text { Dimension } k\end{array}$
Dvoretzky-Kiefer-Wolfowitz
$r=r_{\operatorname{DKW}}(\alpha, k, N):=2 k \sqrt{\frac{\ln ^{2} / \alpha}{2 N}}$
$\Rightarrow r_{\mathrm{Dkw}}(\cdot, k, N)=\mathcal{O}\left(\frac{k}{\sqrt{N}}\right)$
McDiarmid + min-max loss bounds [4]
$r=r_{M}(\alpha, k, N):=\sqrt{\frac{2 \ln (1 / \alpha)}{N}}+\sqrt{\frac{2(k-1)}{\pi N}}+\frac{4 k^{1 / 2}(k-1)^{1 / 4}}{N^{3 / 4}}$
$\Rightarrow r_{M}(\cdot, k, N)=\mathcal{O}\left(\frac{k^{3 / 4}}{\sqrt{N}}\right)$

Drawback: computational cost of 1) computing vertices; and 2) solving LMI for all vertices

- Rapid growth of vertex count \rightarrow vertex enumer ation applicable for very low dimensions ($k \leq 7$) of the sample space \mathcal{W}
- Computation of the vertices of the ambiguity set alone is more time-consuming than solving the complete reformulated problem.

Sample complexity
1 Given a closed-loop system \quad Set-up
$x_{t+1}=\left(A\left(w_{t}\right)+K B\left(w_{t}\right)\right) x_{t}$
with a \hat{p}-MSS controller K (stochastic approach)
2 Define distributional stability region $\mathcal{S}:=\left\{p^{\prime} \mid\right.$ (4) p^{\prime}-MSS $\}$
3 Compute $\boldsymbol{\operatorname { m a x }} r$ r, s.t. $\mathcal{A}_{r}^{\ell_{1}}(\hat{p}) \subseteq \mathcal{S} \Rightarrow \mathrm{P}((4) p-\mathrm{MSS}) \geq(1-\alpha)$
For Bernoulli system in [5], $\mathcal{A}_{r}^{\ell_{r}}(\hat{p}) \subseteq \mathcal{S}$ is easy to test

$$
\rightarrow \text { Distributionally robust - Stochastic }
$$

For a given confidence level, the dis tributionally robust approach provides a stabilizing controller using several orders of magnitude less data.

Future work

- Extend to optimal control setting and nonlinear dynamics
- Relax i.i.d. assumption \rightarrow Markov jump systems

