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Objective /System Dynamics \ /Reinforcement Learning \
The parallel autonomy system learns optimal policies to assist a human i(£) =Ax(t) + Bu(t)
operator in regulating a process — from continuous improvements with B ’ Q  On-Policy
minimal interventions, to taking over full-control when necessary. Ya =5 - -
~ 7 Yn =Ch, Viz(te)) = | (2T(#)Qx(t) + ul ())Rus(t))dt (b + 1) Pia(ty +7) — a(te) Pia(ts)
U =uy, 4 Ug, Ly tr+71 T
- N\ | where V(b + ) - == T (@ ()Qa(t) + ul (t) Ruy(1)) dt
Parallel Autonomy axl - stat e+ 7) \‘ A
relR . state NP Pi(A + BK;) + (A + BK;)TP, + KTRK; + Q =0,
v, € R"*1 : output accessed by autonomy uipr = —g R BT K..1=—R'BTP,
— yn € RP*1 @ output accessed by human PA+ATP—P'B'R™B'P+Q =0,
i:'{\f < L e u € R™>1 1 input of the plant O Off-Policy /
W\ L — i‘j: \\\ - . T
> \ N Uy | human ax(ty/at = Ax(t)+Bu(t) YoV Un :human generated control V, — 9% (Az + Bu) Vi(z(te + 7)) — Vi(z(ty)) — o VT BA (u, ) dt
\ TN > y (t) =C x(t) Ug - ‘ z te
i—_L' t 1 h(t) = r)1((t) autonomy CompUted control = dViT (Axz + Bu;) + %TBA(U, u;) 1s integrated over o(t, o, u(t)) te+T
> sHonemy Ya y. () and dz dz > =— [ (2"Qz + u] Ru;) dt.
Human Operator x(t) a . . . — _27Qx — ul Rus + 2T BA (u, u;) 0 2
S A eR™" :internal dynamics matrix - 12T T de o
HCI B eR"™m :input matrix uip1 = —gRIBTEL
\ j \ Ch € RP*™: human observation matrix / wu u;) = u—u; /
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Assumptions Optimal Control Formulation /I-Iuman-m-the-Loop Reinforcement Learning o
(J Human policy is linear and is given by d  Problem 1 (Minimum Intervention): Solve the infinite- In this case, we have & = Ay, + Bu,(x) where A, = A + BKC}, .
up(z) = Kpyn(x) = K,Chxe horizon optimal control problem
] The matrices A, K,, and C, are unknown to the autonomy system. J (20, to, up) = inf 70 (27Qa + u] (2) Muy () + ul Ruy,) dt d  Minimum Intervention:
A Input matrix B is known to the autonomy system. e to . . -Policy: r) = u;i(x w;(x i r) =0,
P y 5y d Problem 2 (Take Over): Solve Problem 1 withu, = 0. On POI',Cy Let ua(x) = ui(r) then Itera.te c?n z( ) by letting o ()
1 The autonomy system can measure u,(x). = Off-Policy: Let uq(x) = 0. The off-policy is %g and thus Alug,u;i) .
N\ AN J We iterate on u;(x) withug(x) = 0.
N\(‘)\rﬁPolicy Learning of a Minimum Interventiorj Policy EI Ta ke Over.
° ° ° 3 100 —131(15) \ .
@pllcatlon to Car FO"OWII‘Ig g ~ o | = Off-Policy: Let uq(z) = 0. The off-policy is up + uq and thus A(up + uq, u;i) .
v, i S i v, B \ K We iterate on i () with uwp = up . J
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A D TS AR © « \ e Main Analysis Results
§ [T R S e oY (1 We avoid learning along a single state-space trajectory which we show leads to data collinearity under certain
Car Following. W 05 1 152 25 _ —3(0) conditions such as algebraic multiplicity of eigenvalues.
Time (sec) e ——fijif(ii)hout Intervention
The error dyn.amics S _ _ _ ; O We show that exploring a minimum number of pairwise distinct state-space trajectories is necessary to avoid
T1(t) = — Ell(t)’ . e collinearity in the learning data.

t2(t) =z1(t) — x3(t),

—up(t)

—uq(t)
_ 1 \ (J We make a clear separation between exploitation of learned policies and exploration of the state-space, and
Ig(t) —_ _~I3(t) + _'U-, P‘ff-PoIicy Learning of a Control Takeover Policy \ \ J : J
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) my my 100 I I TR R T propose an exploration scheme that requires switching to new state-space trajectories rather than injecting
where z1(t) = 01(t), z2(t) = 8(t), z3(t) = v3(t) and u(t) = 0 ‘ Time (sec) noise continuously while evaluating the cost-to-go. This avoidance of continuous noise injection minimizes
s 71 1 o 1 -—-Without Takeover . . . . . . i . . .
f2(t). Moreover, v, 95 are the speed error variables and $ is interference with human action, and avoids bias in the convergence to the stabilizing solution of the underlying
the spacing error variable and f5(t) is the force error applied of ‘ P —— ‘ ‘ . : :
0 05 : 15 2 25 3 35 algebraic Riccati equation.

to the following car. Let my = mg =1 and oy = as = 1. Time (sec)
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— ) J We show conditions under which existence and uniqueness of solutions can be established for off-policy
reinforcement learning in continuous-time linear systems; namely a required knowledge of the input matrix B.
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Human operator partially observes the state:
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