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Discounted Markov Decision Process:
• a set of states 𝑆
• a set of actions 𝐴
• a discount factor 𝛾 ∈ (0,1)
• a transition probability 𝑃 ⋅ 𝑠, 𝑎 at each 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴
• a reward function 𝑟 𝑠, 𝑎 ∈ [0,1]

Goal: find a good policy 𝜋: 𝑆 → 𝐴, such that the following expected
reward is at most 𝜖-away from the maximum possible

∀𝑠: 𝑉𝜋 𝑠 ≔ 𝐸  𝛾𝑡𝑟
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𝑡=0

𝑠𝑡, 𝜋 𝑠𝑡 |𝑠0 = 𝑠 ≥ 𝑉∗ 𝑠 − 𝜖

At any state 𝑠, an agent plays an action 
𝑎, the agent will go to the next state 𝑠′
with some probability 𝑃 𝑠′ 𝑠, 𝑎 and at 
the same time receive reward 𝑟(𝑠, 𝑎). 
Curse of dimensionality:
• Go game: #states ~3361

• Autonomous driving: #states ~
inifinity

A basic model: generative model
• The agent can query as many 

samples as possible from any (𝑠,𝑎).
• Each sample costs 𝑂(1) time to 

obtain.

How to use features for provably efficient policy-learning in RL?
• Q1: How many observations of state-action-state transitions are 

necessary for finding an ϵ-optimal policy?
• Q2: How many samples are sufficient for finding an 𝜖-optimal policy 

with high probability and how to find it?

Assumption 1: features for the transition kernel

𝑃 𝑠ᇱ 𝑠, 𝑎 =  𝜓 𝑠ᇱ 𝜙(𝑠, 𝑎)

∈[]

𝜙: known features for state-action pairs
𝜓: unknown linear coefficients

𝑃 ∈ ℝ ௌ× ×ௌ Φ Ψ

Algorithm 1: provable dimension reduction with a parametric Q-
learning method
Represent Q-function with parameter 𝑤:

𝑄௪ ≔ 𝑟 𝑠, 𝑎 + 𝛾𝜙 𝑠, 𝑎 ୃ𝑤

𝑉௪ 𝑠 ≔ max
∈

 𝑄௪(𝑠, 𝑎)

𝜋௪ 𝑠 ≔ argmax∈𝑄௪(𝑠, 𝑎)

Learning 𝑤 via Q-Learning and linear-regression:
• Find a rep. state-action pairs ℒ ⊂ S × A, ℒ = 𝐾 s.t. Φℒ is regular
• 𝑤() ← 0, 𝑖 ← 1

• For each 𝑠, 𝑎 ∈ ℒ

o Obtain 𝑚 samples from 𝑃 ⋅ 𝑠, 𝑎 : 𝑠ଵ, 𝑠ଶ, … 

o Compute empirical average 𝐴() 𝑠, 𝑎 = 𝑚ିଵ ∑ 𝑉௪షభ

ୀଵ (𝑠)

• 𝑤() ← Φℒ
ିଵ𝐴(), 𝑖 ← 𝑖 + 1

Equivalence to linear function
approximator and advantages:
• Assumption 1 is equivalent to 

assuming linear function-
approximators of the optimal Q-
function with zero Bellman-error

Theorem 1: With 
𝑂෨ 𝐾 1 − 𝛾 ି𝜖ିଶ

samples, Algorithm 1 recovers an 𝜖-
optimal policy with high probability.

Optimality? 
Need stronger assumption
Assumption 2: convex-hull anchors
there exists ℒ ⊂ 𝑆 × 𝐴 such that each 
𝑃 ⋅ 𝑠, 𝑎 comes is in the convex-hull of 
{𝑃 ⋅ 𝑠, 𝑎 ∶ 𝑠, 𝑎 ∈ ℒ}

Theorem 2: Under Assumption 2, the 
optimal complexity of an obtaining 𝜖-
optimal policy is 

Θ෩ 𝐾 1 − 𝛾 ିଷ𝜖ିଶ .
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