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Discounted Markov Decision Process:

* asetofstates S

* asetofactions 4

* adiscount factor y € (0,1)

 atransition probability P(- |s,a) ateachs € Sanda € A
* areward function r(s,a) € [0,1]

Goal: find a good policy m:S — A, such that the following expected

reward is at most e-away from the maximum possible
Vs: VP (s) == E Zytr (st,7t(st))|s0 =s|=V*(s)—¢€
t=0

Assumption 1: features for the transition kernel

> (b5, )
k€E[K]

¢r: known features for state-action pairs

Py unknown linear coefficients

P(s'ls,a) =

How to use features for provably efficient policy-learning in RL?

* Q1: How many observations of state-action-state transitions are
necessary for finding an e-optimal policy?

* Q2: How many samples are sufficient for finding an e-optimal policy
with high probability and how to find it?

Algorithm 1: provable dimension reduction with a parametric Q-
learning method
Represent Q-function with parameter w:

Qy =71(s,a) +yp(s,a)™w
W (s) = max Q,, (s, a)
a€eA
my (s) = argmax,e4Qw (s, a)
Learning w via Q-Learning and linear-regression:
* Find a rep. state-action pairs L € S X A, |£]| = K s.t. &, is regular
e w® 0,ie1
* Foreach (s,a) € L
o Obtain m samples from P(: |s, a): 54,55, ...
o Compute empirical average AV (s,a) = m™! ;'n=1 V,i-1(Sj)
e W« 140, j—i+1

https://arxiv.org/abs/1902.04779
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At any state s, an agent plays an action

a, the agent will go to the next state s’

with some probability P(s’|s, a) and at

the same time receive reward r (s, a).

Curse of dimensionality:

* Go game: #states ~3361

* Autonomous driving: #states ~
inifinity

A basic model: generative model

* The agent can query as many
samples as possible from any (s,a).

* Each sample costs O(1) time to
obtain.

Equivalence to linear function

approximator and advantages:

* Assumption 1 is equivalent to
assuming linear function-
approximators of the optimal Q-
function with zero Bellman-error

Theorem 1: With
O(K(1—y)7e?)

samples, Algorithm 1 recovers an €-

optimal policy with high probability.

Optimality?

Need stronger assumption
Assumption 2: convex-hull anchors
there exists L € § X A such that each
P(: |s,a) comesis in the convex-hull of
{P( Is;,a;) ¢ (s4,a;) € L}

Theorem 2: Under Assumption 2, the
optimal complexity of an obtaining e-
optimal policy is

O[K(1 —y)3e2].



