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Motivation

Systems without analytic description require data-based modeling.

Classical system identification insufficient for complex non-
linear dynamics [6]
⇒ Flexibility of nonparametric models grows with available data

Closed-loop data gathering for unstable and constrained dy-
namical systems [1]
⇒ Ensure safety during closed-loop learning

How are formal guarantees provided for control on data-driven models?
How does increasing the number of training samples impact control performance?

Gaussian Process Regression

•Bayesian nonparametric modeling as ”distribution over functions” [5]

fGP(x) ∼ GP(m(x), k(x,x′))

•Based on training data D = {x(i), y(i) = f (x(i)) + ε}Ni=1, it provides mean and variance

µN(x) := E [fGP(x)|x,D] = m(x) + kᵀ(K + σ2
nIN)

−1(y −m(x(1:N)))

σ2
N(x) := V [fGP(x)|x,D] = k(x,x)− kᵀ(K + σ2

nIN)
−1k

−2 −1 0 1 2
−4

−2

0

2

4

x

f G
P
(x
)

D
mean function µ(x)
error bound µ(x)± βσ(x)

Stability Analysis using Learned Cost Functions [2]

• Infinite horizon cost with discount γ and stage cost l(·) as Lyapunov function

V (x) =
∞∑
k=0

γkl(f k(x))

•Approximated cost Ṽ (x) through Gaussian process regression with kernel

k̃(x,x′) = k(x,x′)− γk(x,f (x′))− γk(f (x),x′) + γ2k(f (x),f (x′))

•Parallelized interval analysis of Ṽ (f (x))− Ṽ (x) < 0 for Lyapunov decrease region

•Region of attraction as largest level set of Ṽ (x) contained in Lyapunov decrease region
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Lyapunov decrease region

Ṽ (f(x)) − Ṽ (x)

Ṽ (f(x)) − Ṽ (x) < 0
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Learned infinite horizon cost function Ṽ (x) satisfies Bellman equation at training points.

Learning Rate of Gaussian Process Regression [3]

• Informative training points in proximity of test point x
•Bound GP posterior variance at x by considering m
training points with distance less than ρ

σ2(x) ≤ k(0)− k2(ρ)

k(0) + σ2
n/m

ρ

x

Theorem

For training data drawn from probability density p(·)
such that there exists ρ(N) and c, ε ∈ R+ with

lim
N→∞

ρ(N) = 0∫
x′∈Rd:‖x−x′‖≤ρ(N)

p(x′)dx′ ≥ cN−1+ε,

the posterior variance satisfies

lim
N→∞

σ2
N(x) = 0 a.s.
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Stable Control through Uniform Error Bounds [4]

•Assumption: dynamical system f (x, u) is a sample from a GP with Lipschitz constant Lf

• Lipschitz continuous posterior mean µN(·) and standard deviation σN(·) with
‖µN(x)− µN(x

′)‖ ≤ Lµ‖x− x′‖ ‖σN(x)− σN(x
′)‖ ≤ ωσ(‖x− x′‖)

Theorem

The learning error is probabilistically bounded by

P

|f (x)− µ(x)| ≤

√
log

( r
τ + 1

δ

)
σN(x) + (Lµ + Lf)τ + ωσ(τ ), ∀x ∈ X

 ≥ 1− δ

on the set X with maximal extension r for every δ ∈ (0, 1), τ ∈ R+.

⇒ Feedback linearizing controller ensures ultimate boundedness with probability 1− δ
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Future Work

•Performance guarantees for closed-loop learning and on-line learning with error bounds

•Optimal and safe exploration of a dynamical system in a task space

• Stable cautious MPC with reliable chance constraints for Gaussian process models

• Sampling-based analysis of models obtained through machine learning
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