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e Informative training points in proximity of test point x

e Bound GP posterior variance at & by considering m
training points with distance less than p

o< 0

For training data drawn from probability density p(-)
such that there exists p(/N) and ¢, e € R, with
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the posterior variance satisfies

Classical system identification insufficient for complex non-
linear dynamics [6]
= Flexibility of nonparametric models grows with available data

Closed-loop data gathering for unstable and constrained dy-
namical systems [1]
= Ensure safety during closed-loop learning

How are formal guarantees provided for control on data-driven models?
How does increasing the number of training samples impact control performance?
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Gaussian Process Regression

e Bayesian nonparametric modeling as "distribution over functions” [5]

fop(x) ~ GP(m(x), k(z, z')) Stable Control through Uniform Error Bounds [4]

e Based on training data D = {z, ¢ = f(a?) + €}, it provides mean and variance
un(z) == E[fgp(z)|x, D] = m(z) + kT(K + o>Iy) (y — m(z"M)) e Assumption: dynamical system f(x,u) is a sample from a GP with Lipschitz constant L
ov(@) =V |[fgp(x)|x, D] = k(z,x) — kT(K +o-Iy) 'k e Lipschitz continuous posterior mean () and standard deviation oy (-) with

lun(@) — pn ()| < Lyfle — 27| lon(z) — on(@)]| < wolllz — 2||)

The learning error is probabilistically bounded by

—mean function yix) ,
--- error bound pu(x) + Bo(z) pu + 1

: Pl l|f(x)—plx)| < log( 5 )UN(33)+(LH—|—Lf)T—|—WU(T), VeeX | >1-§

on the set X with maximal extension r for every § € (0,1), 7 € R.

Stability Analysis using Learned Cost Functions [2]

= Feedback linearizing controller ensures ultimate boundedness with probability 1 — ¢
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e Infinite horizon cost with discount v and stage cost [(-) as Lyapunov function
Vie)=> 2" )
k=0

e Approximated cost V (z) through Gaussian process regression with kernel
bz, ®') = k(z, &) — vk(z, f(@') — vk(f (@), @) + Vk(f (), f(2))) 3
e Parallelized interval analysis of V(f(x)) — V(x) < 0 for Lyapunov decrease region

)

e Region of attraction as largest level set of V(x) contained in Lyapunov decrease region

Lyapunov decrease region region of attraction
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Future Work
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> 4 V(f(=)) — V()
V(f(z) - V(e) <0 &

e Performance guarantees for closed-loop learning and on-line learning with error bounds

e Optimal and safe exploration of a dynamical system in a task space

71 71 e Stable cautious MPC with reliable chance constraints for Gaussian process models

Learned infinite horizon cost function V(&) satisfies Bellman equation at training points. e Sampling-based analysis of models obtained through machine learning
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