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Summary

I Se�ing: average-cost RL with discrete actions and

value function approximation

I Politex: so�ened and averaged policy iteration.

I If the value function error a�er τ steps satisfies

‖Qπ − Q̂π ‖ν ≤ ε(τ ) = ε0 + O(
√
1/τ )

where ε0 is the approximation error, and ν is the

stationary state-action distribution, then the regret of

Politex in uniformly mixing MDPs is of the order

RT = Õ(T 3/4 + ε0T ) .

I Regret bound does not scale in the size of the MDP,

does not depend on the "concentrability coe�icient",

easy to implement (no confidence bounds required).

Politex algorithm

Input: phase length τ > 0, initial state x0
Set Q̂0(x, a) = 0 ∀x, a
for i := 1, 2, . . . , do
Policy iteration: πi(·|x) = argmin

u∈∆
〈u, Q̂i−1(x, ·)〉

Politex : πi(·|x) = argmin
u∈∆

〈u,
i−1∑
j=0

Q̂j(x, ·)〉 − η−1H(u)

∝ exp
(
− η

i−1∑
j=0

Q̂j(x, ·)
)

Execute πi for τ time steps and collect datasetZi
Estimate Q̂i fromZ1, . . . ,Zi,π1, . . . ,πi

end for

Di�erent value estimation methods are possible. For

non-linear Q-functions, one can maintain only the most

recent n estimates.

Politex analysis

Assumptions:

I A1 (Unichain). MDP states form a single recurrent class.

I A2 (Uniform mixing). supπ ‖(νπ − ν )>Hπ ‖1 ≤ exp(−κ−1)‖νπ − ν ‖1,
where Hπ is the transition probability matrix for (s, a) pairs under

π , and νπ is the stationary state-action distribution.

Let λπ = limT→∞
1
T
∑T

t=1 c(xt,π (xt)) be the average cost of a policy.

Regret decomposes as

RT =

T∑
t=1

c(xt, at) − c(x∗t , a
∗
t ) = VT + RT +WT

VT =

T∑
t=1

ct − λπ(t) RT =

T∑
t=1

λπ(t) − λπ ∗ WT =

T∑
t=1

λπ ∗ − c∗t

I VT and WT are the di�erences between the instantaneous and

average costs, respectively scale as κT 3/4
and κ

√
T w.h.p.

I RT is the pseudo-regret, bounded using the regret bound of the

Exponentially Weighted Average (EWA) forecaster and the value

error bound.

Least squares policy estimation (LSPE)

Bounding RT requires Q̂i(x, a) ∈ [b, b + Qmax] and bounded error

‖Qπi − Q̂i‖ν∗, ‖Qπi − Q̂i‖µ∗⊗πi ≤ ε(τ ) = ε0 + O(
√
1/τ ) .

LSPE:

I Linear value function approximation Q̂π = Ψwπ

I Obtains a simulation-based solution to the projected Bellman

equation Ψw = Ππ (c − λ1 + HΨw)

Under the additional assumptions below, w.h.p. LSPE satisfies the

error bound, and Qmax is bounded.

I A3 (Features). Columns of [Ψ 1] are linearly independent, and

features are bounded.

I A4 (Feature excitation). For any π , λmin(Ψ
>diag(νπ )Ψ) ≥ σ > 0.

Experiments

Politex + LSPE on �eueing problems
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Figure: Average cost at the end of each phase

for the 4-queue and 8-queue environments

(mean and std of 50 runs), for di�erent η.

Politex + neural networks on Atari

0 0.25e8 0.50e8 0.75e8 1e8

Game frames

0

1000

2000

R
e
w

a
rd

 p
e
r 

e
p
is

o
d
e

 POLITEX

DQN

Figure: Ms Pacman game scores obtained by

the agents at the end of each game, using runs

with di�erent random seeds.
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