What is AutoML?

an Automated Machine Learning (AutoML) system

® chooses an algorithm together with hyperparameters

® to achieve the best performance on a (supervised learning) task

e without human intervention.
why AutoML?

® humans are expensive (especially data scientists!)
e computation is cheap

® too many models; can't try them all

to find a reasonable answer, fast, we need:

e Information. What meta-features predict model performance?

e Speed. What meta-features are worth computing?

" ™\ s N ([N A
— Training Training | | Training
Training Q
g é Validation Validatior] [Validation
Q N Y B
E v Test Test Test
=% Validation — Meta- | | Meta
0Q Meta-traming| ¢ 1- dation | test
\. X 78\ <
N\ % Test Meta-learning >

Our approach

main ideas used by Oboe:

Collaborative Filtering for AutoML Model Selection

e algorithm performance is low rank; rank decomposition gives best meta-features

e use optimal experiment design to cold

e the rest is engineering. ..

~

4 offline stage)
compute low
.. data error matrix dimensional
training datasets —f>| : —> : —> :
preprocessing generation algorithm
features
_ J
/ y time-constrained online stage
data time-constrained infer
test dataset —> : —> . —>» performance of —>»| ensembling
preprocessing model selection
other models

o

A

time target doubling

c.f. SOTA in AutoML: auto-sklearn |[2]

at train time (offline stage):

e compute meta-features of training datasets.

predictions

e determine best model(s) on training datasets (try them all and pick the best!)

at test time (online stage):

e compute meta-features of test dataset.

o find similar datasets (w.r.t. meta-features)

e form ensemble using models that performed best on similar datasets

® tune hyperparameters

e.g., using Gaussian processes [2, 3, 5], bandit-based methods [6], sparse Boolean functions [4] , . ..

Chengrun Yang, Yuji Akimoto, Dae Won Kim, Madeleine Udell

Cornell University

AutoML = linear algebra

at train time (offline stage):

e given: m training datasets, n machine learning models
e measure: error of each model on each dataset

o form: m X n error matrix E (yellow)
o find: X € R™* Y € R™" (orange) for which

models dataset latent meta-features
s
% models
lav]
PCA N qu)
5 . 2 8
é E % ° %
CG ~—
< — 3 |5
mmpute <
(white entries) g
S
&

interpretation:

o rows z; € R" of X are dataset meta-features
e columns y; € R* of Y are model meta-features

* z;y; = L;; are predicted model performance
at test time (online stage):

e given: new test dataset = new row of £ (blue and white)

® measure: error of some fast, informative models on new dataset (blue blocks)
e find: dataset latent features = using least squares

e compute: model performance (white blocks) as ¢ = Y

e select: models with best predicted performance to use in ensemble

remaining questions: how to choose rank and find fast, informative models

Experiment design finds fast, informative models

e predict runtime #; of model j on test dataset (predictors = # data points, # features)

It works!

Experimental setup.

® Datasets: OpenML [8] and UCI [1] datasets with 150-10,000 data points and no missing
entries.

o Metric for error matrix: balanced error rate

e Candidate algorithms from python scikit-learn: Adaboost, decision tree, extra trees,
random forest, gradient boosting, Gaussian naive Bayes, kNN, logistic regression,
multilayer perceptron, perceptron, kernel SVM, linear SVM

Numerical results

® Oboe achieves SOTA performance

T T 9 al

~2.2 = gi o

< < 2.4 | .

221 =P — |

= 8 4

;20 — Z 9.0 — =

+ H !

= 1.9 | = |

S '7 1.6/ |

51.8' él 4 —— Oboe
= 1.0 20 40 80 160 320 640 =% 1.0 2.0 40 80 16.0 32.0 64.0 anto-sklearn
= runtime budget (s) & runtime budget (s) random

(a) Ranking on OpenML datasets
(meta-LOOCV) as a function of time.

(b) Ranking on UCI datasets (meta-test)
as a function of time.

e Modeling assumptions are warranted

Algorithm type Runtime prediction accuracy Error matrix I is (aPX) low rank [7
within factor of 2 within factor of 4 05

Adaboost 83.6% 94.3% g

Decision tree 76.7% 88.1% 04

Extra trees 96.6% 99.5% 13

Gradient boosting 53.9% 84.3% 1077

Gaussian naive Bayes 89.6% 96.7% S - 02 %

kNN 85.2% 88.2% .]

Logistic regression 41.1% 76.0% 10! e,

Multilayer perceptron 78.9% 96.0% ."‘00-..,,“

Perceptron 75.4% 94.3% OO .m““'-o..,

Random Forest 94.4% 98.2%

Kernel SVM 59.9% 86.7% 0 10 20 30 40 50

Linear SVM 30.1% 73.2% index 7

o Use (D-optimal) experiment design to choose fast, informative models. Solve o Experiment design selects most informative models

n —1
. . . — ?4_0
minimize log det (Z vjyjij) S 0.03 2
Yj 1 = 0.030 T 3.5 Ny
’ = 0.025 = N
O = 0.020 g30
subject to Zvjt- <T R e W
=1 = 0.010
/ . 30.010 £2.0 M —— ED (number)
. — 0.0051 —}— ED (number) with meta-features
v; € 10,1 V5 € [n]. Nl ‘ ‘ ‘ = | ' ' ' ED) i oo
I %(2%) 15(6%) 25(11%) 35(15%) - 5(2%) 15(6%) 25(11%) 35(15%) —— QR with meta-features

number (percentage) of observed entries number (percentage) of observed entries ~ —t— PMF

Figure 3: Comparison of sampling schemes (QR or ED) in Oboe and PMF. "QR" denotes QR
decomposition with column pivoting; "ED (number)" denotes experiment design with number of observed
entries constrained. The left plot shows the regret of each AutoML method as a function of number of
entries; the right shows the ranking of each AutoML method in the regret plot (1 is best and 5 is worst).

 Value v; is large for fast, informative models. Run those! (blue blocks)

Choose a rank you can afford to fit

must run at least & models to fit k-dimensional latent meta-features. . .

given time budget 7 for learning on new dataset
initialize rank k£ = 1, time target t = 7y < 7/2
while time remains

e Chengrun Yang: cy438@cornell.edu
e Madeleine Udell: udell©@cornell.edu

e choose k fast, informative models using experiment design

e run those models on the dataset and use to infer performance of all models Bibliography
_ . . [1] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.
® Create ensem ble US|ng mOde|S W|th pred|Cted beSt performance [2] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. Efficient and robust automated machine learning. In Advances in
Neural Information Processing Systems, pages 2962-2970, 2015.
® dOU ble time bUdget t, INCrease ran k k‘ If mEta—CV error rm proves [3] Nicolo Fusi and Huseyn Melih Elibol. Probabilistic matrix factorization for automated machine learning. Advances in Neural Information Processing Systems, 2018.

[4] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter Optimization: A Spectral Approach. arXiv preprint arXiv:1706.00764, 2017.

[5] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing. Neural Architecture Search with Bayesian Optimisation and Optimal Transport.
Advances in Neural Information Processing Systems, 2018.

[6] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization. /CLR, 2017.
[7] Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank? SIAM Journal on Mathematics of Data Science, 1(1):144-160, 2019.

	References

