Oboe: Collaborative Filtering for AutoML Model Selection

Chengrun Yang, Yuji Akimoto, Dae Won Kim, Madeleine Udell Cornell University

What is AutoML?

an Automated Machine Learning (AutoML) system

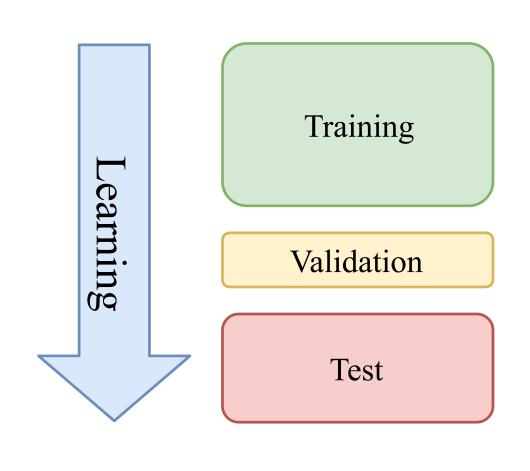
- chooses an algorithm together with hyperparameters
- to achieve the best performance on a (supervised learning) task
- without human intervention.

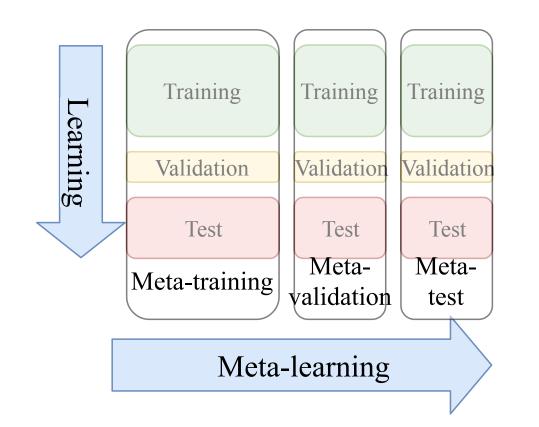
why AutoML?

- humans are expensive (especially data scientists!)
- computation is cheap
- too many models; can't try them all

to find a reasonable answer, fast, we need:

- Information. What meta-features predict model performance?
- Speed. What meta-features are worth computing?

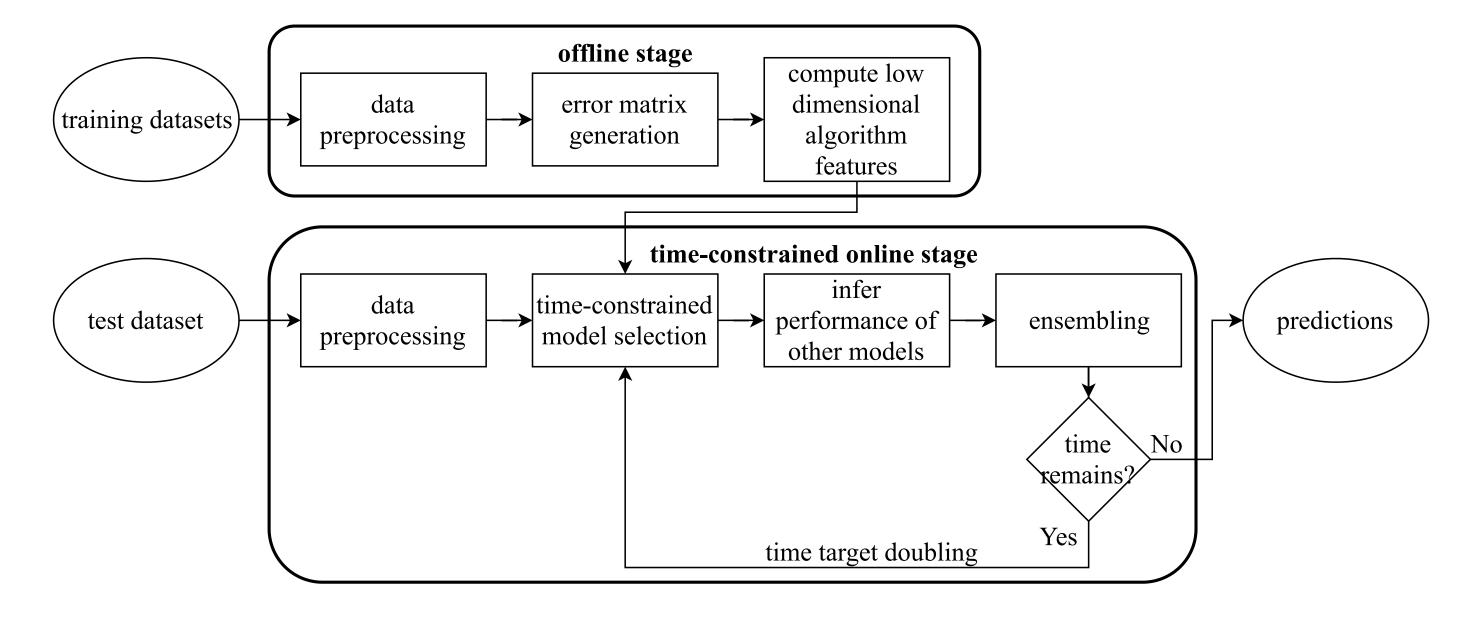




Our approach

main ideas used by Oboe:

- algorithm performance is **low rank**; rank decomposition gives best meta-features
- use optimal experiment design to cold
- the rest is engineering...



c.f. SOTA in AutoML: auto-sklearn [2]

at train time (offline stage):

- compute meta-features of training datasets.
- determine best model(s) on training datasets (try them all and pick the best!)

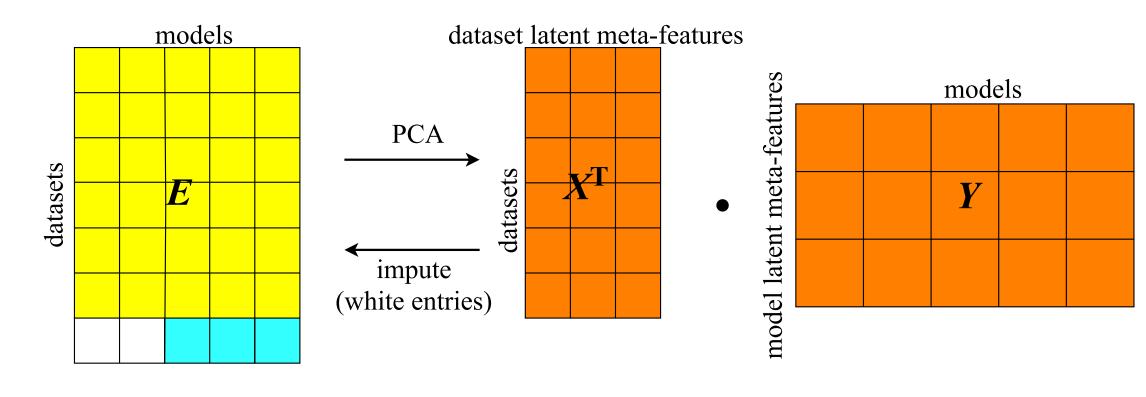
at test time (online stage):

- compute meta-features of test dataset.
- find similar datasets (w.r.t. meta-features)
- form ensemble using models that performed best on similar datasets
- tune hyperparameters e.g., using Gaussian processes [2, 3, 5], bandit-based methods [6], sparse Boolean functions [4], ...

AutoML = linear algebra

at train time (offline stage):

- given: m training datasets, n machine learning models
- measure: error of each model on each dataset
- form: $m \times n$ error matrix E (yellow)
- find: $X \in \mathbf{R}^{m \times k}$, $Y \in \mathbf{R}^{k \times n}$ (orange) for which



interpretation:

- rows $x_i \in \mathbf{R}^k$ of X are dataset meta-features
- columns $y_i \in \mathbf{R}^k$ of Y are model meta-features
- $x_i y_i \approx E_{ij}$ are predicted model performance

at test time (online stage):

- given: new test dataset = new row of E (blue and white)
- measure: error of some fast, informative models on new dataset (blue blocks)
- find: dataset latent features \hat{x} using least squares
- compute: model performance (white blocks) as $\hat{e} = \hat{x}Y$
- select: models with best predicted performance to use in ensemble

remaining questions: how to choose rank and find fast, informative models

Experiment design finds fast, informative models

- ullet predict runtime \hat{t}_i of model j on test dataset (predictors =# data points, # features)
- Use (D-optimal) experiment design to choose fast, informative models. Solve

$$\begin{array}{ll} \text{minimize} & \log \det \left(\sum_{j=1}^n v_j y_j y_j^T \right)^- \\ \text{subject to} & \sum_{j=1}^n v_j \hat{t}_j \leq \tau \\ & v_j \in [0,1] \ \ \, \forall j \in [n]. \end{array}$$

• Value v_i is large for fast, informative models. Run those! (blue blocks)

Choose a rank you can afford to fit

must run at least k models to fit k-dimensional latent meta-features.

given time budget τ for learning on new dataset initialize rank k=1, time target $t=\tau_0<\tau/2$ while time remains

- choose k fast, informative models using experiment design
- run those models on the dataset and use to infer performance of all models
- create ensemble using models with predicted best performance
- double time budget t; increase rank k if meta-CV error improves

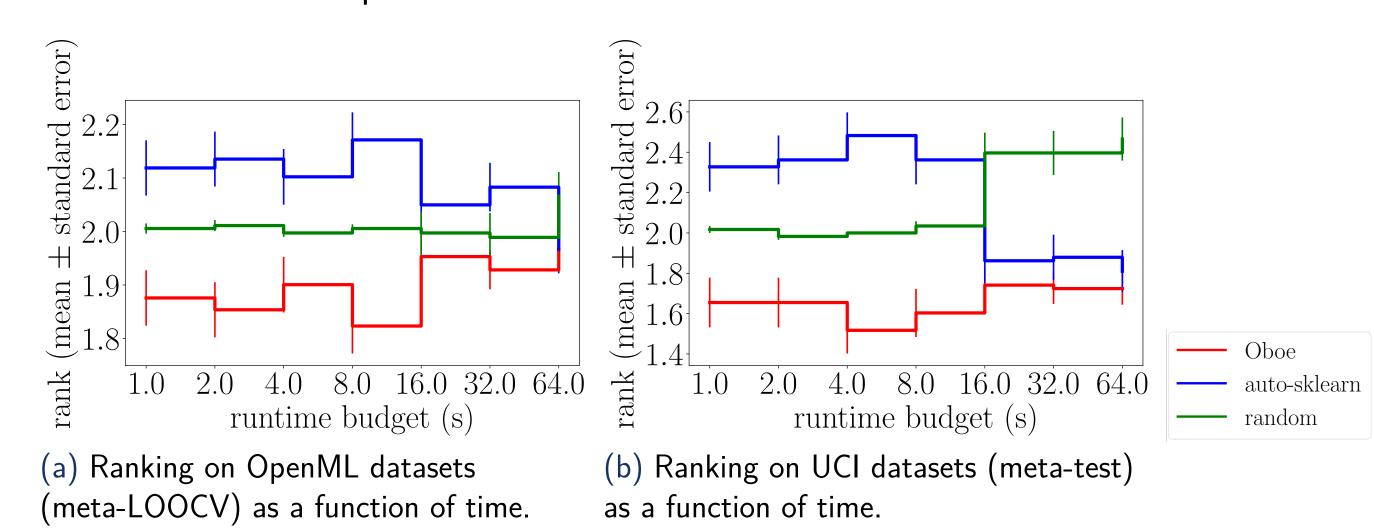
It works!

Experimental setup.

- Datasets: OpenML [8] and UCI [1] datasets with 150–10,000 data points and no missing entries.
- Metric for error matrix: balanced error rate
- Candidate algorithms from python scikit-learn: Adaboost, decision tree, extra trees, random forest, gradient boosting, Gaussian naive Bayes, kNN, logistic regression, multilayer perceptron, perceptron, kernel SVM, linear SVM

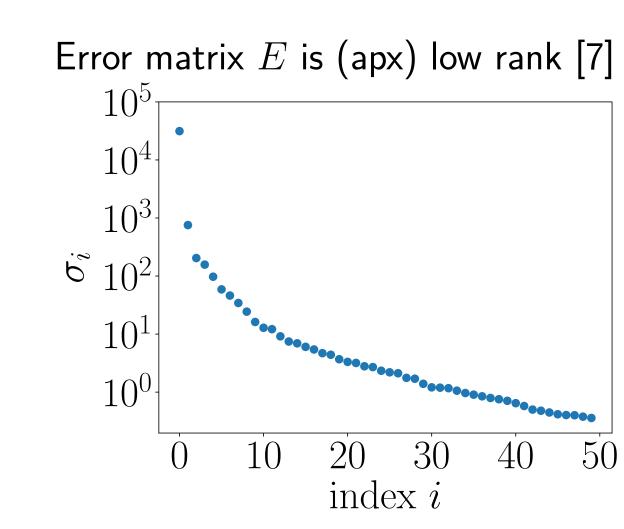
Numerical results

Oboe achieves SOTA performance



N/1 - -1 - 1:

Algorithm type	Runtime prediction accuracy	
	within factor of 2	within factor of 4
Adaboost	83.6%	94.3%
Decision tree	76.7%	88.1%
Extra trees	96.6%	99.5%
Gradient boosting	53.9%	84.3%
Gaussian naive Bayes	89.6%	96.7%
kNN	85.2%	88.2%
Logistic regression	41.1%	76.0%
Multilayer perceptron	78.9%	96.0%
Perceptron	75.4%	94.3%
Random Forest	94.4%	98.2%
Kernel SVM	59.9%	86.7%
Linear SVM	30.1%	73.2%



Experiment design selects most informative models

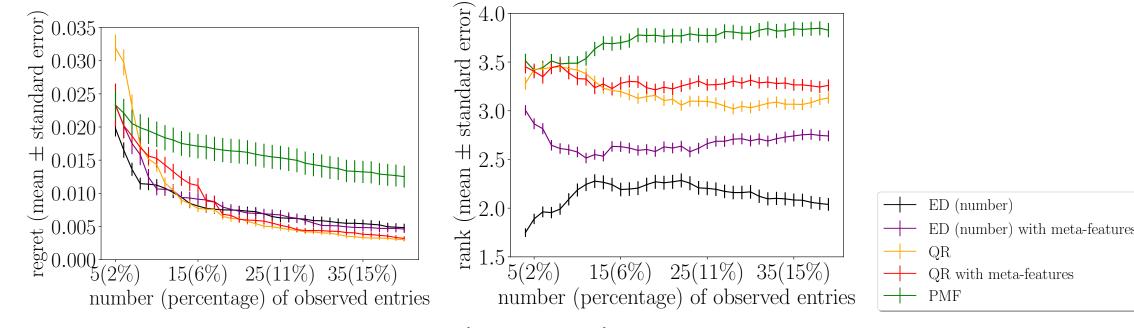


Figure 3: Comparison of sampling schemes (QR or ED) in Oboe and PMF. "QR" denotes QR decomposition with column pivoting; "ED (number)" denotes experiment design with number of observed entries constrained. The left plot shows the regret of each AutoML method as a function of number of entries; the right shows the ranking of each AutoML method in the regret plot (1 is best and 5 is worst).

Thanks!

- Chengrun Yang: cy438@cornell.edu
- Madeleine Udell: udell@cornell.edu

Bibliography

- [1] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.
- [2] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. Efficient and robust automated machine learning. In Advances in Neural Information Processing Systems, pages 2962–2970, 2015.
- 3 Nicolo Fusi and Huseyn Melih Elibol. Probabilistic matrix factorization for automated machine learning. Advances in Neural Information Processing Systems, 2018.
- | Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter Optimization: A Spectral Approach. arXiv preprint arXiv:1706.00764, 2017 [5] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing. Neural Architecture Search with Bayesian Optimisation and Optimal Transport.
- Advances in Neural Information Processing Systems, 2018. [6] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization. ICLR, 2017
- [7] Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank? SIAM Journal on Mathematics of Data Science, 1(1):144–160, 2019.