What is AutoML?

an Automated Machine Learning (AutoML) system

® chooses an algorithm together with hyperparameters

® to achieve the best performance on a (supervised learning) task

e without human intervention.
why AutoML?

® humans are expensive (especially data scientists!)
e computation is cheap

® too many models; can't try them all

to find a reasonable answer, fast, we need:

e Information. What meta-features predict model performance?

e Speed. What meta-features are worth computing?
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Our approach

main ideas used by Oboe:

Collaborative Filtering for AutoML Model Selection

e algorithm performance is low rank; rank decomposition gives best meta-features

e use optimal experiment design to cold

e the rest is engineering. ..
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c.f. SOTA in AutoML: auto-sklearn |[2]

at train time (offline stage):

e compute meta-features of training datasets.

predictions

e determine best model(s) on training datasets (try them all and pick the best!)

at test time (online stage):

e compute meta-features of test dataset.

o find similar datasets (w.r.t. meta-features)

e form ensemble using models that performed best on similar datasets

® tune hyperparameters

e.g., using Gaussian processes [2, 3, 5], bandit-based methods [6], sparse Boolean functions [4] , . ..
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AutoML = linear algebra

at train time (offline stage):

e given: m training datasets, n machine learning models
e measure: error of each model on each dataset

o form: m X n error matrix E (yellow)
o find: X € R™* Y € R™" (orange) for which
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interpretation:

o rows z; € R" of X are dataset meta-features
e columns y; € R* of Y are model meta-features

* z;y; = L;; are predicted model performance
at test time (online stage):

e given: new test dataset = new row of £ (blue and white)

® measure: error of some fast, informative models on new dataset (blue blocks)
e find: dataset latent features = using least squares

e compute: model performance (white blocks) as ¢ = Y

e select: models with best predicted performance to use in ensemble

remaining questions: how to choose rank and find fast, informative models

Experiment design finds fast, informative models

e predict runtime #; of model j on test dataset (predictors = # data points, # features)

It works!

Experimental setup.

® Datasets: OpenML [8] and UCI [1] datasets with 150-10,000 data points and no missing
entries.

o Metric for error matrix: balanced error rate

e Candidate algorithms from python scikit-learn: Adaboost, decision tree, extra trees,
random forest, gradient boosting, Gaussian naive Bayes, kNN, logistic regression,
multilayer perceptron, perceptron, kernel SVM, linear SVM

Numerical results

® Oboe achieves SOTA performance
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(a) Ranking on OpenML datasets
(meta-LOOCV) as a function of time.

(b) Ranking on UCI datasets (meta-test)
as a function of time.

e Modeling assumptions are warranted

Algorithm type Runtime prediction accuracy Error matrix I is (aPX) low rank [7
within factor of 2 within factor of 4 05

Adaboost 83.6% 94.3% g

Decision tree 76.7% 88.1% 04

Extra trees 96.6% 99.5% 13

Gradient boosting 53.9% 84.3% 1077

Gaussian naive Bayes 89.6% 96.7% S - 02 %

kNN 85.2% 88.2% . ]

Logistic regression 41.1% 76.0% 10! e,

Multilayer perceptron 78.9% 96.0% ."‘00-..,,“

Perceptron 75.4% 94.3% OO .m““'-o..,

Random Forest 94.4% 98.2% . . . . . .

Kernel SVM 59.9% 86.7% 0 10 20 30 40 50

Linear SVM 30.1% 73.2% index 7

o Use (D-optimal) experiment design to choose fast, informative models. Solve o Experiment design selects most informative models
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Figure 3: Comparison of sampling schemes (QR or ED) in Oboe and PMF. "QR" denotes QR
decomposition with column pivoting; "ED (number)" denotes experiment design with number of observed
entries constrained. The left plot shows the regret of each AutoML method as a function of number of
entries; the right shows the ranking of each AutoML method in the regret plot (1 is best and 5 is worst).

 Value v; is large for fast, informative models. Run those! (blue blocks)

Choose a rank you can afford to fit

must run at least & models to fit k-dimensional latent meta-features. . .

given time budget 7 for learning on new dataset
initialize rank k£ = 1, time target t = 7y < 7/2
while time remains

e Chengrun Yang: cy438@cornell.edu
e Madeleine Udell: udell©@cornell.edu

e choose k fast, informative models using experiment design

e run those models on the dataset and use to infer performance of all models Bibliography
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