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ABSTRACT
We present a Wasserstein metric-based Distributionally Robust Optimization (DRO) approach to

develop novel learning algorithms that are robust to adversarial perturbations in the input data.
Our approach minimizes the worst case loss over a family of distributions on the observed data
that are close to the empirical distribution in the sense of the Wasserstein metric. The min-max
Wasserstein DRO problem can be relaxed to a convex regularized learning formulation that links
robustness to regularization. We establish bounds on the prediction and estimation biases of the
solution to our formulation under mild conditions. The proposed approach has been applied
to develop robust regression, classification, and optimal decision making techniques that have
been shown to outperform the classical methodologies both theoretically and empirically. Two
notable applications include detecting CT exams with an abnormally high radiation exposure,
and prescribing optimal treatments for patients with diabetes or hypertension. The latter implies
an applicability of this framework to data-driven decision making.

WASSERSTEIN DRO APPROACH
• Intuition:

– Estimate the regression line that is not skewed by outliers, through minimizing some
expected loss function under the "true" distribution of (x, y), where x is the feature
vector and y is the response variable.

– The samples (xi, yi), i = 1, . . . ,N, may be contaminated with outliers.

– Solution: hedge against a family of plausible distributions.

• The Wasserstein DRO problem:

inf
β∈D

sup
Q∈B

EQ[|y−x′β|].

• Notation:

– β: the regression coefficient to be estimated; Q: the probability distribution of (x,y).

– B: the Wasserstein ball of distributions centered at the empirical distribution P̂N : B =

{Q ∈M (Z ) : dW (Q, P̂N)≤ ε}, where the Wasserstein distance is defined through,

dW (Q, P̂N), min
Π∈P(Z ×Z )

{∫
Z ×Z

‖(x1,y1)− (x2,y2)‖ Π
(
d(x1,y1),d(x2,y2)

)}
,

with Π the joint distribution of (x1,y1) and (x2,y2), with marginals Q and P̂N .

• The DRO problem could be relaxed to

inf
β∈D

ε‖(−β,1)‖∗+
1
N

N

∑
i=1
|yi−xi

′β|.

PERFORMANCE GUARANTEES

Let β∗ and β̂ be the true and estimated regression coefficients, respectively.

Theorem 1 When ‖(x,y)‖ ≤ R a.s., ‖(−β,1)‖∗ ≤ B̄, for any 0 < δ < 1, with probability at least 1− δ

with respect to the sampling,

E[|y−x′β̂|]≤ 1
N

N

∑
i=1
|yi−xi

′β̂|+ 2B̄R√
N

+ B̄R

√
8log(2/δ )

N
.

Theorem 2 Under sub-Gaussian assumption on (x,y), when ‖(−β,1)‖2 ≤ B̄2, with a high probability,

‖β̂−β∗‖2 ≤
C̄RB̄2µ

Nλmin
w(Bu)Ψ(β∗).

GROUPWISE WASSERSTEIN GROUPED LASSO
• Goal: recover the group-wise sparsity in the predictors, e.g.,

– Dummies used to represent different levels of a categorical predictor;

– Gene expression data: gene pathways define the groups.

• Notation:

– x = (x1, . . . ,xL), and β = (β1, . . . ,βL), where xl ,βl are the predictor and regression coef-
ficient of group l (which has pl predictors), respectively.

– zw , ( 1√
p1

x1, . . . , 1√
pL

xL,My), where M is very large.

• Define the Wasserstein metric using the following norm:

‖zw‖2,∞ , max
{ 1
√

p1
‖x1‖2, . . . ,

1
√

pL
‖xL‖2,M|y|

}
,

the DRO problem could be relaxed to the following GWGL formulation:

inf
β

(
ε

L

∑
l=1

√
pl‖βl‖2 +

1
N

N

∑
i=1
|yi−xi

′β|

)
.

GROUPING EFFECT
Theorem 3 Suppose the predictors are standardized and the response is centered. If x,i is in group l1 and
x, j is in group l2, and ‖β̂l1‖2 6= 0, ‖β̂l2‖2 6= 0, where β̂ = (β̂1, . . . , β̂L) is the solution to GWGL, define

D(i, j) =

∣∣∣∣∣
√pl1 β̂i

‖β̂l1‖2
−
√pl2 β̂ j

‖β̂l2‖2

∣∣∣∣∣.
Then,

D(i, j)≤
√

2(1−ρ)√
Nε

,

where ρ = x,i′x, j is the sample correlation, and pl1 , pl2 are the number of features in groups l1 and l2,
respectively.

PREDICTION-BASED OPTIMAL DECISION MAKING

• Problem: given a set of actions [M] , {1, . . . ,M}, choose the one that yields the best future
outcome y, with the aid of auxiliary data x that is predictive of y.

• Idea: predict the outcome under each action using a robust nonlinear framework, and pre-
scribe the actions based on their predictions.

• Applications: Prescribe optimal treatments for patients with diabetes or hypertension.

ROBUST NONLINEAR PRESCRIPTION

• Assumption: under each action m, ym = xm
′β∗m +hm(xm)+ εm.

• Method:

– For each m∈ [M], derive a robust estimate of β∗m, denoted by β̂m, by solving the Wasser-
stein DRO problem.

– Given a new sample x, find its Km nearest neighbors in each action group m using the

metric: ‖x−xmi‖Ŵm
=
√

(x−xmi)′Ŵm(x−xmi), where Ŵm =diag((β̂m1)
2, . . . ,(β̂mp)

2), and
xmi is the sample of group m.

– Compute a K-NN estimate of the future outcome for x under action m: ŷm(x) =
1/Km ∑

Km
i=1 ym(i), where ym(i) is the response of the i-th closest neighbor to x in group

m.

– Prescribe action m with probability e−ξ ŷm(x)/∑
M
j=1 e−ξ ŷ j(x), where ξ > 0 is a pre-specified

constant.

PRESCRIPTIVE PERFORMANCE
Theorem 4 Assume ŷm(x) and ym(x) are non-negative, ∀m ∈ [M]. For any k ∈ [M],

M

∑
m=1

e−ξ ŷm(x)

∑ j e−ξ ŷ j(x)
ym(x)≤yk(x)+

(
ŷk(x)−

1
M

M

∑
m=1

ŷm(x)
)

+ξ

(
1
M

M

∑
m=1

ŷ2
m(x)+

M

∑
m=1

e−ξ ŷm(x)

∑ j e−ξ ŷ j(x)
y2

m(x)
)
+

logM
ξ

.

CT RADIATION OVERDOSE DETECTION
• Identify patients who receive an abnormally high radiation dose.

• Response variable: CTDI (CT Dose Index)

• Predictors: patient characteristics and exam related variables.

– Patient Gender, Height, Manufacturer, Scanner protocol, Xray-modulation-type.

– Totally 28 predictors, and 189,959 patients.

• Outlier detection criterion:

Outlier =

{
YES, if |residual|> threshold× σ̂ ,

NO, otherwise.

• Specificity=0.85; Sensitivity=0.91; PPV=0.84; NPV=0.92.

GWGL ON A SURGERY DATASET
• Predict the post-operative hospital length of stay using patient demographics, pre- and

intra-operative variables.

• 2,275,452 patients; 131 numerical predictors.

• 67 groups of predictors, with the following variables grouped together:

– Dummy variables corresponding to the same categorical predictor.

– Variables indicating the evidence, and the number of occurrences of the same disease.

– Variables indicating similar diseases, e.g., cardiac arrest & myocardial infarction.

• The mean and standard deviation of out-of-sample Median Absolute Deviation (MAD):

PRESCRIBE OPTIMAL TREATMENTS
• Goal: develop optimal prescriptions for patients with type-2 diabetes and hypertension

using the EHRs.

• Predictors: demographics, diagnoses, lab tests, and past admission records.

• Response: HbA1c, and systolic blood pressure.

• The reduction in HbA1c/systolic blood pressure, mean (std.):
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