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Abstract

We consider a harsh network model characterized by asyn-
chronous updates, message delays, unpredictable message
losses, and directed communication among nodes. In this set-
ting, we analyze a modification of the Gradient-Push method
for distributed optimization. We show that our proposed
method asymptotically performs as well as the best bounds
on centralized gradient descent [1].

Model

We consider the separable optimization problem:

min
z∈Rd

F (z) =

n∑
i=1

fi(z),

where each fi is known only to agent i.

Agents communicate through a strongly connected directed
graph. We allow for:
•Bounded delays Ld,

•Bounded consecutive link failures Lf,

•Agents waking up at least once every Lu > 0 iterations.

•Gradients of each fi are corrupted by a zero-mean indepen-
dent random variable εi, where ‖εi‖ ≤ bi and E[‖εi‖2] ≤ σ2

i .

•Each fi(z) is µi-strongly convex over Rd.

•The gradient of each fi(z) is L-Lipschitz continuous.

We propose the following Robust Asynchronous Stochastic
Gradient-Push (RASGP) algorithm for the above scenario.

Performance Guarantee

Theorem 1. Suppose assumptions above hold, then the

RASGP algorithm with the step-size α(k) = n/(µk) for k ≥ 1,

will converge to the unique optimum z∗ with the following

asymptotic rate:

E
[
‖zi(k)− z∗‖2

]
≤ Luσ

2

kµ2
+ Ok

(
1

k1.5

)
, ∀i,

where σ2 :=
∑

i σ
2
i and µ :=

∑
i µi.

The leading term matches the best bounds for (centralized)
gradient descent that takes steps in the direction of the sum
of the noisy gradients of f1(z), . . . , fn(z) (see [2]), when Lu = 1.

Main Algorithm

The RASGP is based on a standard idea of mixing consensus and gradi-
ent steps, first analyzed in [3]. The push-sum scheme, inspired by [4], is
used instead of the consensus scheme, which allows us to handle delays,
and message losses. We note that a new step-size strategy is used to
handle asynchronicity.

Algorithm 1 Robust Asynchronous Stochastic Gradient-Push (RASGP)

1: Initialize the algorithm with y(0) = 1, φxi (0) = 0, φyi (0) = 0, κi(0) =

−1, ∀i ∈ {1, . . . , n} and ρxij(0) = 0, ρyij(0) = 0, κij(0) = 0, ∀(j, i) ∈
E .

2: At every iteration k = 0, 1, 2, · · · , for every node i:

3: if node i wakes up then

4: βi(k) =
∑k

t=κi+1α(t); (to handle asynchrony)

5: xi← xi − βi(k)ĝi(k); (ĝi(k) = ∇fi(zi(k)) + εi(k))

6: κi← k;

7: φxi ← φxi + xi
d+
i +1

, φyi ← φyi + yi
d+
i +1

; (to handle delays and link failures)

8: xi← xi
d+
i +1

, yi← yi
d+
i +1

;

9: Node i broadcasts (φxi , φ
y
i , κi) to its out-neighbors: N+

i

10: Processing the received messages

11: for (φxj , φ
y
j , κ
′
j) in the inbox do

12: if κ′j > κij then

13: ρ∗xij ← φxj , ρ
∗y
ij ← φyj ;

14: κij ← k′j;

15: end if

16: end for

17: xi← xi +
∑

j∈N−i

(
ρ∗xij − ρxij

)
, yi← yi +

∑
j∈N−i

(
ρ∗yij − ρ

y
ij

)
;

18: ρxij ← ρ∗xij , ρyij ← ρ∗yij ;

19: zi← xi
yi

;

20: end if

21: Other variables remain unchanged.

Numerical Simulations

Binary class, strongly convex, and smooth Support Vector Machine
(SVM):

F (ω, γ) =
1

2

(
‖ω‖2 + γ2

)
+ C

N∑
j=1

h(bj(A
>
j ω + γ)),

where (ω, γ) ∈ Rd, Aj ∈ Rd−1, bj ∈ {−1,+1}, j = 1, . . . , N , are the data points
and their labels, respectively. Here, h : R → R is the smoothed hinge
loss. Hence the local objective functions are

fi(ωi, γi) =
1

2n

(
‖ω‖2 + γ2

)
+ C

∑
j∈Di

h(bj(A
>
j ω + γ)).

Uniform noise of εi ∼ U[−b/2, b/2]d and εc ∼ U[−
√
nb/2,

√
nb/2]d is added

to the gradient estimates of each agent i and the centralized algorithm,
respectively. The network is chosen to be a directed cycle graph and a
random graph with n = 50, (N = 1000, C = 0.5, d = 3, b = 5, Ld ∈ {1, 3}, Lf ∈
{1, 3}, Lu ∈ {1, 3}).

Remarks

This work presents an algorithm that allows for delays, link failures and
asynchrony. Moreover, we showed that the distributed algorithm can
asymptotically reach the optimal bound for its centralized counterpart.
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