Data-Driven Model Predict
Stability and Robust

e Control of a linear time-invariant (LTI) system G of order n, directly from measured data
{ud, y?1 !, without prior system identification.

e Goal: Tracking of a setpoint (u*, 3%).
e Method: Data-driven model predictive control (MPC).
e Theoretical guarantees with noisy output measurements — robust data-driven MPC.

Trajectory-based System Representation

For a sequence {uy.}, ' define the Hankel matrix

Ug U1 ... UN—_T
, Uy U2 ... UN-L+1
Hp(u)

‘ur—1ur ... UN-1

Definition: A signal {u;}; ' with u; € R™ is persistently exciting of order L if
rank(H(u)) = mL.

Theorem [1, 2]

Suppose {uz, y,‘f}ff:‘(}l is a trajectory of an LTI system G, where u is persistently ex-
citing of order L + n. Then, {uy, gk}éz_ol is a trajectory of G if and only if there exists

a € RY=L+1 gych that
HL(ud)
{HL(yd)} Qo : (1)

Implications

e Time-shifts of measured data span all other trajectories.

e Model-free, data-driven system parametrization.

e Only requirements: persistence of excitation & upper bound on model order.

e Has been employed to verify dissipativity [3] and to design stabilizing controllers [4].

Robust Data-Driven Model Predictive Control

Noisy output data §;, = vy + 5 With ||ex]|s < € in a) initial data 3¢ and b) online data ;.
MPC Problem: Given the past n input-output measurements, solve

*

(u[t—n,t—1]7 g[t—n,t—l]) —
L—1
min Y £ (ax(t), gr(t)) + X l(t)]2 + Aollo ()]
=
u(t).y

s.t.

Ingredients:

e Prediction / system dynamics (2a), initial conditions (2b), terminal constraints (2c),
iInput constraints (2d), no output constraints — future research.

e Slack variable o: account for noise in (2a) and (implicitly) in (2b), regularized in the cost.
o Stage cost £(u, y) = [lu — u’[|; + ly — v°[[o,
e Regularization of @ — improves signal-to-noise-ratio.

e Same scheme without (2c) suggested in [5] — no terminal constraints
— No guarantees on recursive feasibility and stability.

e Goal: Prove recursive feasibility and stability of the closed loop.

Algorithm: Multi-Step Robust Data-Driven MPC Scheme

1. At time ¢, take the past n measurements wu;_, ;_1), Yi—n +—1) and solve (2).
2. Apply the optimal input sequence ﬂf‘o 1] () over the next n time steps.
3.Sett =1t +nandgo backto 1).
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Proposition (recursive feasibility)

Define H,, = e = || H, ; and consider (u*,y*) = (0,0).

Suppose v is persistently exciting of order L + 2n and L > 2n.
Then, there exists £y such that, for any ¢ < &, if the robust MPC problem (2) is
feasible at initial time ¢ = 0, then the n-step MPC scheme is feasible at any ¢ € N.

Theorem (practical stability)

Suppose 1! is persistently exciting of order L + 2n and L > 2n.

For any Vo4 > 0, there exist suitable A\, A\, as well as bounds &, ¢,. such that for
any € < &y, cpee?Q < Cpe, the origin is practically exponentially stable w.r.t. € with region
of attraction {xy € R" | V(xy) < Vzoat.

o = J; + W (W positive definite) is a Lyapunov function for the closed loop of the
multi-step MPC scheme.

e The closed loop converges to a set, whose size depends on the noise bound ¢.
e Same properties hold locally for a 1-step scheme.
e )\, A\, must be large enough for stability, but not too large for robustness.

e c,.&° < ¢y is @ quantitative "persistence-of-excitation-to-noise"-ratio and determines

the size of Vzo 4, i.e., the region of attraction.

Example

Realistic four tank system [6]:

e Stable, 4 states, 2 inputs, 2 outputs, noisy measurements with N = 400, € = 0.005.
e No model knowledge.

e Design parameters: L =30, Q =1, R=5-10"*1, )\, = 1000, \,&>=0.1.

e Goal: Tracking of a desired setpoint (u*, ).
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Confirms theoretical results:

e The proposed scheme tracks the desired setpoint & the tracking error increases with €.
e Inadequate tuning of A\,, A\, — unstable closed loop.

e The scheme without terminal constraints [5] destabilizes the system.

Conclusion

e First results on data-driven (model-free) MPC with stability and robustness guarantees.
e Connection between system & design parameters and closed-loop region of attraction.
e Theoretical results confirmed in practical example.
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