
Institute for Systems Theory and Automatic Control
University of Stuttgart
www.ist.uni-stuttgart.de

Contact:
Julian Berberich
julian.berberich@ist.uni-stuttgart.de

Data-Driven Model Predictive Control with
Stability and Robustness Guarantees

Julian Berberich1, Johannes Köhler1, Frank Allgöwer1, and Matthias A. Müller2

1University of Stuttgart, Germany, 2University of Hannover, Germany

Data-Driven Model Predictive Control with
Stability and Robustness Guarantees

Julian Berberich1, Johannes Köhler1, Frank Allgöwer1, and Matthias A. Müller2

1University of Stuttgart, Germany, 2University of Hannover, Germany

Setting - Unknown LTI System
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•Control of a linear time-invariant (LTI) system G of order n, directly from measured data
{udk, ydk}N−1

k=0 , without prior system identification.

•Goal: Tracking of a setpoint (us, ys).

•Method: Data-driven model predictive control (MPC).

• Theoretical guarantees with noisy output measurements→ robust data-driven MPC.

Trajectory-based System Representation

For a sequence {uk}N−1
k=0 define the Hankel matrix

HL(u) :=


u0 u1 . . . uN−L
u1 u2 . . . uN−L+1
... ... . . . ...

uL−1 uL . . . uN−1

 .
Definition: A signal {uk}N−1

k=0 with uk ∈ Rm is persistently exciting of order L if
rank(HL(u)) = mL.

Theorem [1, 2]

Suppose {udk, ydk}N−1
k=0 is a trajectory of an LTI system G, where u is persistently ex-

citing of order L+ n. Then, {ūk, ȳk}L−1
k=0 is a trajectory of G if and only if there exists

α ∈ RN−L+1 such that [
HL(ud)
HL(yd)

]
α =

[
ū
ȳ

]
. (1)

Implications

• Time-shifts of measured data span all other trajectories.

•Model-free, data-driven system parametrization.

•Only requirements: persistence of excitation & upper bound on model order.

•Has been employed to verify dissipativity [3] and to design stabilizing controllers [4].

Robust Data-Driven Model Predictive Control

Noisy output data ỹk = yk + εk with ‖εk‖∞ ≤ ε̄ in a) initial data ỹd and b) online data ỹt.
MPC Problem: Given the past n input-output measurements, solve

J∗L
(
u[t−n,t−1], ỹ[t−n,t−1]

)
=

min
α(t),σ(t)
ū(t),ȳ(t)

L−1∑
k=0

` (ūk(t), ȳk(t)) + λαε̄
2‖α(t)‖2

2 + λσ‖σ(t)‖2
2

s.t.

[
ū(t)

ȳ(t) + σ(t)

]
=

[
HL+n

(
ud
)

HL+n

(
ỹd
)]α(t), (2a)[

ū[−n,−1](t)
ȳ[−n,−1](t)

]
=

[
u[t−n,t−1]

ỹ[t−n,t−1]

]
, (2b)[

ū[L−n,L−1](t)
ȳ[L−n,L−1](t)

]
=

[
usn
ysn

]
, (2c)

ūk(t) ∈ U, k ∈ I[0,L−1]. (2d)

Ingredients:

•Prediction / system dynamics (2a), initial conditions (2b), terminal constraints (2c),
input constraints (2d), no output constraints→ future research.

•Slack variable σ: account for noise in (2a) and (implicitly) in (2b), regularized in the cost.

•Stage cost `(u, y) = ‖u− us‖2
R + ‖y − ys‖2

Q.

•Regularization of α→ improves signal-to-noise-ratio.

•Same scheme without (2c) suggested in [5]→ no terminal constraints
→ no guarantees on recursive feasibility and stability.

•Goal: Prove recursive feasibility and stability of the closed loop.

Algorithm: Multi-Step Robust Data-Driven MPC Scheme

1. At time t, take the past n measurements u[t−n,t−1], ỹ[t−n,t−1] and solve (2).

2. Apply the optimal input sequence ū∗[0,n−1](t) over the next n time steps.

3. Set t = t + n and go back to 1).

Theoretical Results

Define Hux =

[
HL+n(ud[0,N−1])

H1

(
xd[0,N−L−n]

)], cpe =
∥∥H†ux∥∥2

2
, and consider (us, ys) = (0, 0).

Proposition (recursive feasibility)

Suppose ud is persistently exciting of order L + 2n and L ≥ 2n.
Then, there exists ε̄0 such that, for any ε̄ ≤ ε̄0, if the robust MPC problem (2) is
feasible at initial time t = 0, then the n-step MPC scheme is feasible at any t ∈ N.

Theorem (practical stability)

Suppose ud is persistently exciting of order L + 2n and L ≥ 2n.
For any VROA > 0, there exist suitable λα, λσ as well as bounds ε̄0, c̄pe such that for
any ε̄ ≤ ε̄0, cpeε̄2 ≤ c̄pe, the origin is practically exponentially stable w.r.t. ε̄ with region
of attraction {x0 ∈ Rn | V (x0) ≤ VROA}.

•V = J∗L + W (W positive definite) is a Lyapunov function for the closed loop of the
multi-step MPC scheme.

• The closed loop converges to a set, whose size depends on the noise bound ε̄.

•Same properties hold locally for a 1-step scheme.

•λα, λσ must be large enough for stability, but not too large for robustness.

• cpeε̄2 ≤ c̄pe is a quantitative "persistence-of-excitation-to-noise"-ratio and determines
the size of VROA, i.e., the region of attraction.

Example

Realistic four tank system [6]:

•Stable, 4 states, 2 inputs, 2 outputs, noisy measurements with N = 400, ε̄ = 0.005.

•No model knowledge.

•Design parameters: L = 30, Q = I, R = 5 · 10−4I, λσ = 1000, λαε̄
2 = 0.1.

•Goal: Tracking of a desired setpoint (us, ys).
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(a) Closed-loop output y1

0 20 40 60 80 100 120

MPC iteration

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

o
u

tp
u

t 
y

2

y
2

y
2

s

(b) Closed-loop output y2

Confirms theoretical results:

• The proposed scheme tracks the desired setpoint & the tracking error increases with ε̄.

• Inadequate tuning of λα, λσ→ unstable closed loop.

• The scheme without terminal constraints [5] destabilizes the system.

Conclusion

• First results on data-driven (model-free) MPC with stability and robustness guarantees.

•Connection between system & design parameters and closed-loop region of attraction.

• Theoretical results confirmed in practical example.
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