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Abstract

We present a novel episodic learning framework centered
around Control Lyapunov Functions (CLFs) for uncertain
affine dynamic systems. With this framework we can:
1 Capture a wide class of dynamic uncertainty in the form
of parametric error and unmodeled dynamics.

2 Directly integrate learned models into an established
nonlinear control framework and demonstrate improved
performance.

3 Utilize experimental data to restrict residual uncertainty
and quantify worst-case impact on stability.

Background

ẋ = f(x) + g(x)u

Nonlinear Affine Dynamics

Linear Dynamics

x ∈ Rn f : Rn → Rn

g : Rn → Rn×mu ∈ Rm

ẋ = Aclx
Acl ∈ Rn×n, Hurwitz

Feedback Linearization

u = g(x)†(−f(x)−Kx)

Control Lyapunov Function

α(‖x‖) ≤ V (x) ≤ α(‖x‖)
inf V̇ (x,u) ≤ −α(‖x‖)

Lyapunov Equation (CTLE)

A>P + PA = −Q(CLF)

u ∈ U
Certification of stability

Optimal nonlinear control

Learning the Model to Reality Gap

ẋ = f̂(x) + ĝ(x)u

ẋ = f̂(x) + ĝ(x)u + (g(x)− ĝ(x)︸ ︷︷ ︸
A(x)

)u + f(x)− f̂(x)︸ ︷︷ ︸
b(x)

Parametric Error

Model Estimate

Uncertain Model

Physics Modeling

Unmodeled Dynamics

V̇ (x,u) =

ˆ̇V (x,u)︷ ︸︸ ︷
(f̂(x) + ĝ(x)u)>∇V (x)

CLF Derivative

Uncertain V̇

+(A(x)>∇V (x)︸ ︷︷ ︸
a(x)

)>u + b(x)>∇V (x)︸ ︷︷ ︸
b(x)

Use experimental data and supervised
learning to estimate b and a

V̇ (x,u)− ˆ̇V (x,u) ≈ â(x)>u + b̂(x)

Estimate V̇ Error

CLF-QP Control Law

u(x) = argmin ‖u‖22
s.t. Lf̂V (x) + LĝV (x)u ≤ −α(‖x‖)

s.t. Lf̂V (x) + b̂(x) + (LĝV (x) + â(x)>)u ≤ −α(‖x‖)

u(x) = argmin ‖u‖22

u ∈ U

u ∈ U

Learned models b̂, â

Model Based QP

Augmented QP

Episodic Learning Algorithm

Initial controllers may not be capable of exploring regions of
interest in the state space needed to ensure generalization of
the learned models. An iterative approach that slowly aug-
ments the initial controller with learned information enables
progressive improvement and exploration of the state space.

Algorithm 1 Dataset Aggregation for Control Lyapunov
Functions (DaCLyF)
Require: Lyapunov function V , Lyapunov function derivative
estimate ˆ̇V0, model classes Ha and Hb, loss function L, set
of initial conditions X0, nominal state-feedback controller
u0, number of experiments T , sequence of trust coefficients
0 ≤ w1 ≤ · · · ≤ wT ≤ 1

D = ∅ . Initialize dataset
for k = 1, . . . , T do

x0← sample(X0) . Sample initial condition
Dk ← experiment(x0, uk−1) . Execute experiment
D ← D ∪Dk . Aggregate dataset
â, b̂← ERM(Ha,Hb,L, D, ˆ̇V0) . Fit estimators
ˆ̇Vk ← ˆ̇V0 + â>u + b̂ . Update ˆ̇V
uk ← (1− wk) · u0 + wk · aug(u0,

ˆ̇Vk) . Augment u0
end for
return D, ˆ̇VT , uT

Projection-to-State Stability

b̂, â

V̇ (x,u) =

ˆ̇V (x,u)︷ ︸︸ ︷
(f̂(x) + ĝ(x)u)>∇V (x) + â(x)>u + b̂(x)

Approximation Error

Uncertainty Estimators

True V̇

Optimization Error

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ
(
supτ≥0 ‖ δ(τ ) ‖

)
Projection-to-State

PSS Bound

supτ≥0 ‖ δ(τ ) ‖ ≤ supx∈E sup(a,b)∈∆(x)(a
>u + b)

Worst Case Bound

+(A(x)>∇V (x)− â(x)︸ ︷︷ ︸
a(x)

)>u + b(x)>∇V (x)− b̂(x)︸ ︷︷ ︸
b(x)

Estimation Error

Stability (PSS)

β ∈ KL, γ ∈ K

δ = a(x)>u + b(x)

Uncertainty Set

∆(x) = {(a, b) ∈ Rm × R : ±(a>u′ + b) ≤ ε(x,x′,u′)
for all (x′,u′) ∈ D}

Dataset D

Forward Invariance

Results

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Figure 1: The episodic learning algorithm DaCLyF was deployed on a planar Segway simulation for a total of 20 episodes. The learning augmented controller
successfully outperformed both the model-based controller and the initial proportional-derivative controller in tracking a desired angle trajectory. Estimators b̂(x)
and â(x) were each represented with 2-layer neural networks trained using an absolute error loss function.
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Figure 2: Improvement in the projection-to-state stability of an inverted pendulum system was demonstrated in simulation, showing the ability to stabilize the
pendulum upright. The heat maps indicate the worst case error in the Lyapunov derivative under model based and learning augmented control laws. The
augmented controller displays regions of cooler color in the initial trajectory, indicating improvement in stabilization. Certification of PSS behavior along the
stabilizing trajectory requires targeted approach to exploration of input space. Adequate diversity in the data must be demonstrated to bound worst-case error.

Future Work

• Investigate scalability of this framework through application
to more complex dynamic systems such as quadrotors and
walking robotics.

• Utilize projected learning in the context of barrier and safety
functions.

• Consider the interplay between safety and exploration for
improving PSS bounds.

• Evaluate the sample complexity of the learning algorithm in
terms of state and input dimensions.

• Demonstrate the performance of this approach on a physical
hardware platform.
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