
Theorem	2:	With	probability	1 − #

Requiring																													

§ System	dynamics:

§ Environments are	drawn	i.i.d.	
from	unknown	distribution

§ Dataset:	
§ Sensor:																									(e.g.,	depth)
§ Policy:
§ Rollout	function:	

§ Cost:

§ Goal:	

§ Challenge:		 is unknown!	

PAC-Bayes	Control:	Learning	Policies	that	
Provably	Generalize	to	Novel	Environments	
Anirudha	Majumdar,	Alec	Farid,	and	Anoopkumar Sonar

Problem	Setup PAC-Bayes	for	Control Results	Cont.

Related	Work

PAC-Bayes	theory

Current/Future	Work

Goal:	Synthesize	controllers	that	
provably	generalize	well	to	novel	
environments

Target	applications:
Navigation Grasping

§ Real-time	planning	+	assumptions	on	
environment	[Schouwenaars ‘04,	
Fraichard ‘07,	Althoff ‘15,	Majumdar	‘17]

§ POMDP:	environment	is	part	of	state	
[Richter	‘15,	‘17]

§ PAC-MDP and	PAC-Bayes	MDP	bounds	
[Fard ‘10	‘12,	Kearns	‘02,	Brafman ‘02,	
Fu	‘14]

§ Deep	learning-based	control	[Lenz	‘15,	
Levine	‘16,	Agrawal	‘16,	Mahler	‘17,	
Tobin	‘	17,	Gupta	’17,	many	others	…]
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§ Generalization	bound	for
supervised	learning	[McAllester
‘99,	Seeger	‘02,	Langford	‘03]

§ Recently	used	for	explaining	and	
promoting	generalization	in	deep	
learning [Dziugaite ‘17	‘18,	
Neyshabur ‘17	‘18]

Motivation

Theorem	1:	With	probability	1 − #
over	sampled	environments

Here	$% is	a	prior	over	controllers.
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Training	cost			+							“Regularizer”

Algorithmic	approach:	Minimize	RHS	
of	bound,	i.e.,																			via	
§ Convex	optimization	(Relative	

Entropy	Programming)	for	finite	
policy	spaces

§ SGD for	continuously	
parameterized	policies

CPAC(P )

Obstacle	avoidance:

Grasping:
§ Training	data	from	

ShapeNet
§ 2000	training	objects
§ Deep	neural	net	

policy
§ Bound:	~71%

§ Relax	modeling	assumptions	(e.g.,	
i.i.d.	data)

§ Combine	with	metalearning (e.g.,	
MAML	[Finn	‘17])

Key	idea:	Translate	generalization	
bounds	from	supervised	learning	to	
control	setting	via	reduction

PAC-Bayes	for	Control

§ Robust	PAC-Bayes	controllers	trained	
on	environments	with	~2.5%	higher	
success	rate,					= 0.0819

§ If	train	8 ≠ test	8′,	obtain	upper	
bound	with	help	from	DV	inequality	
[Donsker and	Varadhan ‘75]

N 100 500 1000 104

Bound	on	success	% 73.8 83.0 86.2 90.4

True	success %
(estimate)

91.9 92.0 91.9 91.7

Robust	bound	on	
success	%

54.7 72.4 76.2 81.5

Navigation:
§ Training	data	from	

Stanford	2D-3D-S	
[Armeni ‘17]

§ 1000	training	
environments

§ Gibson	environment	
for	simulation

§ Bound:	~74%Results


