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Motivation

Goal: Synthesize controllers that
provably generalize well to novel
environments

Target applications:
Navigation

Grasping
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= Real-time planning + assumptions on
environment [Schouwenaars ‘04,
Fraichard ‘07, Althoff ‘15, Majumdar ‘17]

= POMDP: environment is part of state
[Richter ‘15, ‘17]

= PAC-MDP and PAC-Bayes MDP bounds
[Fard ‘10 ‘12, Kearns ‘02, Brafman ‘02,
Fu ‘14]

= Deep learning-based control [Lenz ‘15,

Levine ‘16, Agrawal ‘16, Mahler ‘17,

Tobin 17, Gupta ‘17, many others ...]

PAC-Bayes theory

" Generalization bound for
supervised learning [McAllester
‘99, Seeger ‘02, Langford ‘03]

" Recently used for explaining and
promoting generalization in deep
learning [Dziugaite ‘17 ‘18,
Neyshabur ‘17 ‘18]

Problem Setup

= System dynamics:

r(t+1) = fﬁvx(t),/u(t)/,vE)

State Control Environment
= Environments £ are drawn i.i.d.

from unknown distribution D
= Dataset: S ={F1,...,En}
= Sensor:y = g(x; F) (e.g., depth)
= Policy: 7 : y(t) — u(t)
= Rollout function:

PAC-Bayes Control: Learning Policies that
Provably Generalize to Novel Environments

Anirudha Majumdar, Alec Farid, and Anoopkumar Sonar

PAC-Bayes for Control

' Obstacle avoidance:

Results Cont.

IRoM Lab

Intelligent Robot Motion Lab
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* Cost: C'(r ; F) € 0, 1]

« (Goal: b
min Cp(P) := L C(rm F)
P E~D,t~P g

- {Challenge:D is unknown! J

PAC-Bayes for Control

Key idea: Translate generalization
bounds from supervised learning to
control setting via reduction

Supervised Control
Learning Synthesis
Input: z Environment: £

Hypothesis: h,,
Loss: [(hy,; z)

Rollout: 7,
Cost: C(ry; E)
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= |ftrain D # test D’, obtain upper
bound with help from DV inequality
[Donsker and Varadhan ‘75]

‘Theorem 2: With probability 1 — 0
Cfp/(P) <

B—I—log(

Z ]Epec(r"’ i) 4 (e — l)Regularlzer)

i=1

Requiring KL(D'||D) < B

Algorithmic approach: Minimize RHS
of bound, i.e., Cpac(P) via

= Convex optimization (Relative
Entropy Programming) for finite
policy spaces .

= SGD for continuously
parameterized policies

Grasping:

" Training data from
ShapeNet

= 2000 training objects |

" Deep neural net -

policy
" Bound: ~71%

)

s . .
Theorem 1: With probability 1 — 0
over sampled environments N 100 | 500 | 1000 | 10°
On(P) < Coac(P) Bound on success% | 73.8 | 83.0 | 86.2 | 90.4
1y | KL(P|[F) +log(35™) True success % 91.9 | 92.0 | 91.9 | 91.7
N ;w@PC(TW’Ei) \/ 2N (estimate)
Training cost +  “Regularizer” Robust bound on 547 | 72.4 | 76.2 | 81.5
success %
Here Py is a prior over controllers.

Navigation:

Robust PAC-Bayes controllers trained
onh environments with ~2.5% higher
success rate, 5 = 0.0819

Training data from
Stanford 2D-3D-S
[Armeni ‘17]

1000 training
environments
Gibson environment

for simulation
Bound: ~74%

Current/Future Work

" Relax modeling assumptions (e.g.,

.i.d. data)

" Combine with metalearning (e.g.,

MAML [Finn “17])



