

PRINCETON UNIVERSITY

Motivation

Goal: Synthesize controllers that provably generalize well to novel environments

Target applications: Navigation

Related Work

- Real-time planning + assumptions on environment [Schouwenaars '04, Fraichard '07, Althoff '15, Majumdar '17]
- POMDP: environment is part of state [Richter '15, '17]
- PAC-MDP and PAC-Bayes MDP bounds [Fard '10 '12, Kearns '02, Brafman '02, Fu '14]
- Deep learning-based control [Lenz '15, Levine '16, Agrawal '16, Mahler '17, Tobin '17, Gupta '17, many others ...]

PAC-Bayes theory

- Generalization bound for supervised learning [McAllester] '99, Seeger '02, Langford '03]
- Recently used for explaining and promoting generalization in deep learning [Dziugaite '17 '18, Neyshabur '17 '18]

PAC-Bayes for Control

Key idea: Translate generalization bounds from supervised learning to control setting via reduction

Supervised Learning	Control Synthesis	
Input: <i>z</i>	Environment: <i>E</i>	
Hypothesis: <i>h</i> _w	Rollout: r_{π}	
Loss: $l(h_w; z)$	Cost: $C(r_{\pi}; E)$	

PAC-Bayes for Control

Theorem 1: With probability $1 - \delta$ over sampled environments

 $C_{\mathcal{D}}(P) \leq C_{\text{PAC}}(P)$

$$:= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\pi \sim P} C(r_{\pi}; E_i) + \sqrt{\frac{\operatorname{KL}(P \parallel P_0) + \log(\frac{2\sqrt{N}}{\delta})}{2N}}$$

Training cost +

"Regularizer"

Here P_0 is a prior over controllers.

• If train $D \neq$ test D', obtain upper bound with help from DV inequality [Donsker and Varadhan '75]

Theorem 2: With probability $1 - \delta$ $C_{\mathcal{D}'}(P) \leq$

 $\mathcal{B} + \log\left(\frac{1}{N}\sum_{i=1}^{N} \mathbb{E}_{\pi \sim P} e^{C(r_{\pi}, E_i)} + (e-1) \text{Regularizer}\right)$

Requiring $\operatorname{KL}(\mathcal{D}'||\mathcal{D}) \leq \mathcal{B}$

Algorithmic approach: Minimize RHS of bound, i.e., $C_{PAC}(P)$ via Convex optimization (Relative) Entropy Programming) for finite policy spaces SGD for continuously parameterized policies

Results

Grasping:

Training data from ShapeNet 2000 training objects Deep neural net policy **Bound:** ~71%

Bound on suc

True success (estimate)

Robust boun success %

Robust PAC-Bayes controllers trained on environments with ~2.5% higher success rate, $\mathcal{B} = 0.0819$

Navigation:

- Bound: ~74%

Current/Future Work

- i.i.d. data)

Results Cont.

Obstacle avoidance:

	100	500	1000	104
ccess %	73.8	83.0	86.2	90.4
%	91.9	92.0	91.9	91.7
d on	54.7	72.4	76.2	81.5

Training data from Stanford 2D-3D-S [Armeni '17] 1000 training environments Gibson environment for simulation

Relax modeling assumptions (e.g., Combine with metalearning (e.g., MAML [Finn '17])