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INTRODUCTION

MOBILE ROBOT

EXPERIMENTAL VALIDATION
• average inlet velocity qin = 0.78m/s
• !" = 12 models for different combinations of BCs and RANS models
• $% = 16 initial exploration measurements
• m = 200 maximum number of measurements
• |S|=1206 candidate measurement locations

Inference:
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Turbulent flow is characterized by random fluctuations in the flow properties. In
engineering applications we are interested in averaged properties of the flow, e.g.,
the mean velocity components, and not the instantaneous fluctuations. These
averaged properties can be obtained using RANS models:

• Ideally ensemble average:

• Instead decompose velocity vector as

where time-averaged velocity is

Assumptions:

• statistical steadiness: q(t) independent of t1

• ergodicity:

Closure problem:

velocity decomposition → extra unknowns → multiple RANS models

Challenges:

• In general, solutions provided by different RANS models are incompatible with
each other and more importantly with the real world.

• Precise knowledge of boundary conditions and domain geometry is unavailable.

• Appropriate meshing is necessary to properly capture the boundary layer and
get convergent solutions from RANS models.

Eddy-viscosity model Reynolds stress model

MODEL-BASED LEARNING

Model-based learning: combine numerical solutions with empirical 
data using Bayesian inference framework

Time-averaged properties are Normally distributed regardless of the underlying
distribution of the instantaneous velocity field:
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Given a numerical solution, Gaussian process models the 

mean velocity components:

• prior mean μ(x) is given by the numerical solution

• kernel where

Measurement model: with additive Gaussian noise
ε ∼ N(0,σ2(x)) such that .

Problem formulation:

• !" models for combination of RANS models and boundary conditions

• Discrete distribution over models:

• A Gaussian process for each model: 

Given a set of empirical measurements at locations X, find

• posterior probability of models

• posterior distribution given each model

Then, the posterior distributions of flow properties are Gaussian mixtures.
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flow speed sensor calibration

Sensor Type Air Velocity Sensor

Range 0m/s to 1m/s

Accuracy: +/- 5% full scale

Operating Voltage: 10.8V to 26.4V

Output Voltage: 1V to 5V

(a)

(b)

(c) a) flow sensor set
b) analog to digital converter
c) power breadboard
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Planning: given a set of candidate measurement locations S and model
probabilities , determine the next measurement location by

velocity magnitude field for most likely model posterior velocity magnitude field
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Prediction: 20 random measurement locations
• e0 = 0.090m/s 
• e164 = 0.037m/s (59% improvement)

Objective: model-based learning of turbulent flows using empirical data collected
by mobile robots to improve on numerical solutions obtained from Reynolds-
Averaged Navier Stokes (RANS) models.

RANS MODELS

measurement locations
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