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Introduction
Momentum and adaptive rate methods have become the
state-of-the-art for training machine learning models. This
poster answers the question: How can similar algorithms,
incorporating momentum techniques and adaptive rates, be
used for provably correct online learning and adaptive control
in dynamical systems?

Gradient Descent : θk+1 = θk − γ∇θL (θk)
Heavy Ball : θk+1 = θk − γ∇θL (θk) + β (θk − θk−1)

Nesterov Accel : θk+1 = θk − γ∇θL (θk + β(θk − θk−1)) + β (θk − θk−1)
AdaGrad : θk+1 = θk − γΓk∇θL (θk)

Continuous Time Formulations

[1] Continuous Nesterov Accel : θ̈ + 3
t
θ̇ = −γ∇θL(θ)

Continuous Adaptive Rates : θ̇ = −γΓ(t)∇θL(θ)
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Figure: Dynamical Error Model Formulation

ė(t) = Ae(t) + bθ̃T (t)φ(t) (1)
θ̃(t) = θ(t)− θ∗ (2)

Assumption: Model is an exact approximation
• φ(t) is a time-varying regressor

Algorithm Goals
• Goal (primary): Stable and fast learning of θ∗ through θ(t)
• Goal (secondary): Adjust θ(t) (model weights) so that e(t)→ 0
• Two algorithms are proposed to accomplish primary and

secondary goals:
• Algorithm 1: Momentum-like approaches based on high-order tuning
• Algorithm 2: Approaches with time-varying adaptive rates

[1] W. Su, S. Boyd, and E. J. Candès, “A differential equation for modeling nesterov’s accelerated gradient method:
Theory and insights,” Journal of Machine Learning Research, vol. 17, no. 153, pp. 1–43, 2016.

[2] J. E. Gaudio, T. E. Gibson, A. M. Annaswamy, and M. A. Bolender, “Provably correct learning algorithms in the
presence of time-varying features using a variational perspective,” arXiv preprint arXiv:1903.04666, 2019.

[3] A. Wibisono, A. C. Wilson, and M. I. Jordan, “A variational perspective on accelerated methods in
optimization,” Proceedings of the National Academy of Sciences, vol. 113, pp. E7351–E7358, nov 2016.

[4] A. S. Morse, “High-order parameter tuners for the adaptive control of linear and nonlinear systems,” in Systems,
Models and Feedback: Theory and Applications, pp. 339–364, BirkhÃďuser Boston, 1992.

[5] J. E. Gaudio, A. M. Annaswamy, M. A. Bolender, and E. Lavretsky, “Adaptive rates for stable and fast learning
in dynamical systems.” Invention Disclosure, 2019.

[6] J. E. Gaudio, T. E. Gibson, A. M. Annaswamy, M. A. Bolender, and E. Lavretsky, “Connections between
adaptive control and optimization in machine learning,” arXiv preprint arXiv:1904.05856, 2019.

This work was supported by the Air Force Research Laboratory, Collaborative Research and
Development for Innovative Aerospace Leadership (CRDInAL), Thrust 3 - Control Automation
and Mechanization grant FA 8650-16-C-2642 and the Boeing Strategic University Initiative.

Momentum-Based Algorithm Derivation [2]
Bregman Lagrangian [3]

L(θ, θ̇, t) = eᾱt+γ̄t
Dh(θ + e−ᾱtθ̇, θ)− eβ̄tL(θ)



damping kinetic energy potential energy
• h(·) = 1

2‖·‖
2

• L = d
dt

e
TPe
2

 + eTQe
2

• ᾱt = ln (βNt), β̄t = ln
 γ
βNt

, γ̄t = ∫ t
t0 βNνdν

• Design: γ, β, µ > 0
• "Ideal scaling condition" ˙̄βt ≤ eᾱt not needed 𝑥 𝑦

ℎ(𝑥)

ℎ(𝑦)
𝐷௛(𝑦, 𝑥)

Normalizing Signal
Nt , (1 + µφTφ) (3)

Algorithm 1 [2]

L(θ, θ̇, t) = e
∫ t
t0 βNxdx 1

βNt
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2θ̇
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(4)

damping kinetic energy potential energy

• Minimize functional J(θ) = ∫
TL(θ, θ̇, t)dt

• Euler-Lagrange Equation: d
dt

∂L
∂θ̇

(θ, θ̇, t)
 = ∂L

∂θ (θ, θ̇, t)

Second Order ODE

θ̈ +
βNt −

Ṅ t

Nt

 θ̇ = −γβNtφeTPb (5)

Parameter Update with Momentum

Gradient-Like Step ϑ̇ = −γφeTPb
Mixing Step θ̇ = −β(θ − ϑ)Nt

(6)

• Taking β →∞ (strong friction limit) results in the standard first
order MRAC update: θ̇(t) = −γφ(t)eT (t)Pb

• "Ideal scaling condition" ˙̄γt = eᾱt enforces symmetric mixing step

γ
s

F(Nt, ϑ, θ, t)
−φeTPb ϑ θ

Gradient-Like
Step

Mixing
Step

Figure: Block diagram of the algorithm in (6).

Momentum Comparison of Approaches
Algorithm Comparison

Parameterization from [3] Our Approach

L = tp+1
p
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2θ̇
T
θ̇ − Cp2tp−21

2e
2
y

 L = e
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θ̈ + p+1
t θ̇ = −Cp2tp−2φey θ̈ +

βNt − Ṅ t
Nt

 θ̇ = −γβNtφeTPb

• Natural parameterization of the algorithm as a function of the
feature as compared to time

• Algorithm does not change from an overdamped to underdamped
system as time progresses, and is thus capable of running
continuously as features are processed, with no restart heuristic

• Online processing of the data, without a priori knowledge of its
future variation

• Primary goal occurs with persistent excitation of system regressor
• Secondary goal achieved without persistent excitation
• Proven stable regardless of the initial condition, thus an

optimization problem-specific schedule on the parameters of the
problem is not required to set for each initial condition

Momentum Stability Analysis
Lyapunov Function Comparison

Lyapunov Function in [3] For Time-Varying Regression
V = 1

2‖θ̃ + 1
β(1+µφTφ)θ̇‖

2 + γ
β(1+µφTφ)

1
2e

2
y

V̇ = −γe2
y

1 + µφT φ̇
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 + γ
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T φ̇

Our Control Inspired Lyapunov Function [4]
V = 1

γ‖ϑ− θ
∗‖2 + 1

γ‖θ − ϑ‖
2 + eTPe

Gradient Step
Error

Mixing Step
Error

Model PredictionError

V̇ ≤ −2β
γ ‖θ − ϑ‖

2 − ‖e‖2 − [‖e‖ − 2‖Pb‖‖θ − ϑ‖‖φ‖]2 ≤ 0

‖θ − ϑ‖2L2 ≤
γV (t0)

2β as β →∞, ‖θ − ϑ‖2L2 → 0

• With bounded feature magnitude and time derivative:
lim
t→∞

e(t) = 0, lim
t→∞

(θ(t)−ϑ(t)) = 0, lim
t→∞

ϑ̇(t) = 0, lim
t→∞

˙̃θ(t) = 0

• Regret bounded/constant:

Regretcontinuous := ∫ T
0 ‖e(τ )‖2dτ = O(1)
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Figure: State Feedback adaptive control - step response.

Algorithm 2
Parameter Update with Adaptive Rate

θ̇(t) = −γΓ(t)φ(t)eT (t)Pb (7)

Online Adjustment [5]
Online Data

Model Structure
Adaptive Rate Γ

Figure: Adaptive rate block diagram.

• For static parameters, primary and secondary goals achieved:
exponential parameter convergence θ → θ∗ and model tracking
error convergence e→ 0

• Track time-varying parameters θ∗(t) with bound proportional to:
‖θ̃(t)‖ ∝ ‖θ̇∗(t)‖

• Less restrictive finite excitation properties as compared to persistent
excitation. Holds onto excitation with exponential forgetting

• Adaptive rate adjustment based on regressor excitation history
instead of gradient history

• Adagrad-like Algorithm for Online Learning and Adaptive Control
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Figure: Adaptive rate parameter convergence

Concluding Remarks
• Tools rigorously developed in the field of adaptive control can be

employed to provide for provably correct online learning for
momentum and adaptive rate based methods

• There are numerous other similarities in problem statements, tools,
concepts, and algorithms between the fields of adaptive control and
optimization in machine learning

• See [6] for many other areas of opportunity for combining insights
from both fields to solve new problems


