Introduction

Momentum and adaptive rate methods have become the
state-of-the-art for training machine learning models. This
poster answers the question: How can similar algorithms,
incorporating momentum techniques and adaptive rates, be
used for provably correct online learning and adaptive control
in dynamical systems?

O 6y -
——GD Path|-
——HB Path |-
—+—NA Path
—+—~AG Path|-

S~ T

Gradient Descent

g1 = O — YV L (0)

Heavy Ball : 0.1 = 0, — vV L (0y) + 6 (0 — O—1)
Nesterov Accel : 0.1 = 0 — YVoL (01 + B0 — Op_1)) + B (0 — Op_1)
AdaGrad : Hk—l—l — Qk — WFkVQL ((Qk)
[ Continuous Time Formulations ]
| .3,
[1] Continuous Nesterov Accel : 0 + t@ = —yVyL(0)

= —[(t)VyL(0)

Continuous Adaptive Rates :

Online Learning and Adaptive Control

¢ Model T +/> e
Estimate: ¢ }
Plant x
Unknown: 6*

Figure: Dynamical Error Model Formulation
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Assumption: Model is an exact approximation

. ¢(t) is a time-varying regressor

Algorithm Goals

. Goal (primary): Stable and fast learning of 8* through 0(t)

. Goal (secondary): Adjust 0(t) (model weights) so that e(t) — 0
. Two algorithms are proposed to accomplish primary and
secondary goals:

« Algorithm 1: Momentum-like approaches based on high-order tuning
« Algorithm 2: Approaches with time-varying adaptive rates
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. Minimize functional J(#) = fp £(6,0,t)dt
. Euler-Lagrange Equation: c%lt (%(9, Q,t)) = %(H,Q,t)

Second Order ODE
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- Taking 8 — oo (strong friction limit) results in the standard first
order MRAC update: 0(t) = —y¢(t)el (t)Pb
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Figure: Block diagram of the algorithm in (6).
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Momentum Comparison of Approaches

Algorithm Comparison

Parameterization from [3] Our Approach
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 Natural parameterization of the algorithm as a function of the
feature as compared to time

. Algorithm does not change from an overdamped to underdamped
system as time progresses, and is thus capable of running
continuously as features are processed, with no restart heuristic

« Online processing of the data, without a priori knowledge of its
future variation

 Primary goal occurs with persistent excitation of system regressor
. Secondary goal achieved without persistent excitation

. Proven stable regardless of the initial condition, thus an
optimization problem-specific schedule on the parameters of the
problem is not required to set for each initial condition

[ Momentum Stability Analysis

Lyapunov Function Comparison

Lyapunov Function in [3] For Time-Varying Regression

—1lyp 1 )12 gl 1.2
V=2ll0+ 55017+ gaiueray2ty
2 upl ¢ y 3T
V=g (”qu%)? t BaruaTa vl ¢

Our Control Inspired Lyapunov Function [4]
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- With bounded feature magnitude and time derivative:

lim_e(t) =0, lim (6(t) = 0(t)) =0, lim #(t) =0, lim §(t) =0
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. Regret bounded/constant:

Regret ontinuous == /OTHG(T)HQCZT — 0(1)
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Figure: State Feedback adaptive control - step response.
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[ Algorithm 2

Parameter Update with Adaptive Rate
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Figure: Adaptive rate block diagram.

- For static parameters, primary and secondary goals achieved:
exponential parameter convergence ¢ — 6™ and model tracking
error convergence ¢ — ()

. Track time-varying parameters 0*(t) with bound proportional to:
. .
16@) || o< [|67(2)]
« Less restrictive finite excitation properties as compared to persistent
excitation. Holds onto excitation with exponential forgetting

- Adaptive rate adjustment based on regressor excitation history
instead of gradient history

. Adagrad-like Algorithm for Online Learning and Adaptive Control
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Figure: Adaptive rate parameter convergence

Concluding Remarks

. Tools rigorously developed in the field of adaptive control can be
employed to provide for provably correct online learning for
momentum and adaptive rate based methods

« There are numerous other similarities in problem statements, tools,
concepts, and algorithms between the fields of adaptive control and
optimization in machine learning

. See [6] for many other areas of opportunity for combining insights
from both fields to solve new problems



