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Overview

We study learning and control in multi-agent systems in which agents repeatedly interact
in a simultaneous or hierarchical order of play, and update their strategies via myopic
learning rules. We seek rigorous convergence guarantees on the limiting outcomes of
such multi-agent interactions. Key challenges include:
• Dynamic Environment: The environment is non-stationary, evolving as a function
of the agents’ strategies which themselves are being adapted and learned in response
to observations from the environment.

• Misaligned Objectives: Equilibrium solution concepts are studied as agents are
individually optimizing their objective which may not be aligned with others.

We provide theoretical convergence guarantees for deterministic and stochastic gradient
update rules and support the analysis with illustrative numerical examples. Many multi-
agent learning algorithms (gradient play, policy gradient, individual Q-learning, etc.) fit
in this framework.

Hierarchical Play Games

Setting: agents select actions in a sequential order; the leader selects an action with the
knowledge that the follower subsequently selects a best response—i.e., the leader aims
to solve minx1{f1(x1, x2)| x2 ∈ arg minx′ f2(x1, x

′)}. Myopic gradient-based update rules
for this setting are given by

leader : x1,k+1 = x1,k − γ1,kg1(xk)
follower : x2,k+1 = x2,k − γ2,kg2(xk)

where g1 ≡ Df1 ≡ D1f1 + D2f1Dξ and Dξ ≡ −D2
2f
−1
2 ◦D12f2 is defined implicitly—

i.e., via the implicit mapping theorem applied to D2f2 ≡ 0—and g2 ≡ D2f2. Moreover,
the learning rates are such that γ1,k = o(γ2,k).
Definition: A strategy x∗ is a differential Stackelberg equilibrium if Df1(x∗) = 0,
D2f2(x∗) = 0 and D2f1(x∗) > 0, D2

2f2(x∗) > 0.

Asymptotic convergence guarantee

Theorem 1 With x0 ∈ Br(x∗), under suitable assumptions on the noise, functions
being Lipschitz, and the implicit map ξ being a globally asymptotically stable at-
tractor, x2,kξ(x1,k) and xk → x∗ almost surely. If D2f1(x∗) > 0, then x∗ is a stable
differential Stackelberg equilibrium.

Extensions:
–Concentration bounds: Analogous bounds as those for simultaneous play hold.
–Relaxed assumption: results hold assuming ξ is a local attractor on Br(x∗).
–Conjectures: viewing ξ as the leader’s conjecture about the follower, we are exploring
generalizations (beyond best response) using conjectural variations.

Generative adversarial nets: a Stackelberg game

The hierarchical play update can be applied to robust ML applications such as GANs:
in a zero-sum setting, the generator is the leader and the discriminator is the follower.
In a convex-concave regime, e.g., the Stackelberg policy results in a lower cost relative
to Nash; while generally not the case, the approach may lead to insights for obtaining
more robust GAN policies.
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Figure 1: Hierarchical play on a GAN: the leader’s cost is lower compared to simultaneous play.

Simultaneous Play Games

Setting: Each agent selects an action simultaneously in an effort to solve minxi fi(xi, x−i).
Due to their scalability and prevalence in ML, we consider gradient-based updates for
each player of the form

xi,k+1 = xi,k − γigi(xk) where gi(xk) = Difi(xk).
Definition: A strategy x∗ is a differential Nash equilibrium if Difi(x∗) = 0 and
D2
ifi(x∗) > 0 for all i ∈ {1, . . . , n}.

Oracle gradient access: finite-time convergence

Theorem 2 Suppose g is Lipschitz and let
α = min

x∈Br(x)
σ2

min((Dg(x) +Dg(x)T )/2), β = max
x∈Br(x)

σ2
maxDg(x),

and γ =
√
α
β . Then x0 ∈ Br(x∗) =⇒ xk ∈ Bε(x∗),∀k ≥ T where

T = d2βα log(r/ε)e.

Concentration bounds for stochastic gradients

Theorem 3: For sufficiently large N ,
Pr(xk ∈ Bε(x∗),∀k ≥ N |xN ∈ Br(x∗)) ≥ 1− o(∑k≥N γ

2
k)

Corollary 1:
xn→ x∗ almost surely conditioned on the event that xn ∈ Br(x∗).

Extensions:
–Oracle gradient access: we have non-uniform learning rate convergence guarantees
which parallel the study of preconditioning in optimization
–Stochastic gradient access: leveraging multi-timescale stochastic approximation anal-
ysis, we also have concentration bounds for the non-uniform learning rate setting. We
are investigating how the particular choice of learning rate impacts the concentration
bound.

The multiagent cost landscape

Nash and Stackelberg stationary points: {x| g(x) = 0, Digi(x) ≥ 0}. To contrast
simultaneous and hierarchical play, consider the stationary solutions and learning paths
for a quadratic two-player game.
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Figure 2: Two scalar agents with quadratic costs, ci(x) = xTQix + qTi x. Convergence to the Nash (×)
and Stackelberg equilibrium (◦) are shown, contrasted with the Pareto front (−).

References
• B. Chasnov, L. Ratliff, E. Mazumdar, S. Burden. Convergence Analysis of Gradient-Based Learning

with Non-Uniform Learning Rates in Non-Cooperative Multi-Agent Settings, UAI 2019 (ArXiv:
1906.00731).

• T. Fiez, B. Chasnov, L. Ratliff. Convergence of Learning Dynamics in Stackelberg Games, 2019
(ArXiv: 1906.01217).

Policy gradient for linear quadratic games

LQ games are a nice benchmark for understanding the effectiveness of gradient-based
learning in games: under mild conditions, feedback Nash exist, are unique, and can
be computed fairly efficiently via Lyapunov iterations. Agents with linear dynamics
z(t + 1) = Az(t) +B1u1(t) +B2u2(t) and infinite time quadratic costs,

fi(ui, u−i) = Ez0∼D

[ ∞∑
t=0

z(t)TQiz(t) + ui(t)TRi,iui(t) + u−i(t)TRi,−iu−i(t)
]

have unique Nash feedback matrices K∗i where ui(t) = K∗i z(t). We solve for these linear
policies using a variant of policy gradient in which we perform rollouts in minibatches
using sampled policies (e.g., ut = Ktxt + wt+1, wt+1 ∼ N (0, σ2I)):

K+
i = Ki − γ∇̂Ki

fi(Ki, K−i)

∇Ki
fi(Ki, K−i) = 2

(
Ri,iKi −BT

i Pi

(
A−

∑
j

BjKj

))
Ez0∼D

[ ∞∑
t=0

ztz
T
t

]
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Figure 3: Agents play a dynamic game with costs dependent on a shared state z(t), controls for the individual
ui(t) and for others u−i(t). Convergence of our gradient method to the Nash equilibrium is shown for a
randomly generated stable system A and stochastic updates ĝ.
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Figure 4: Region of attraction of the two NEs.

Autonomous agents may learn at different
rates, which causes warping of the vec-
tor field learning dynamics and conver-
gence to different stationary points (cae-
teris paribus). We compare the conver-
gence of a “fast” and “slow” agent to dif-
ferent Nash equilibria under simultaneous
play in a location game on the unit torus:
fi(θi, θ−i) = αi cos(θi) + cos(θi − θ−i).

Future Work

• Hybrid dynamics: Generalize results to settings where the action space consists of a
mix of discrete and continuous inputs.

• Limited or Bandit Feedback: Explore learning in multi-agent systems under limited
feedback leveraging zero–th order optimization, asynchronous stochastic
approximation, and bandit models.

• Model-Free vs Model-Based: investigate adaptive control and conjecture-based
learning paradigms for strategically biasing opponent.

• Incentive Design: expanding analysis to more general hierarchical decision problems
with the goal of, e.g., influencing behavior.
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